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Section 1 - Executive Summary 
 
This report describes in detail the entire Maximal Munch search engine created by Adolfo, Alex, Austin, 
Brandon, Daniel, and Ryan in EECS-398: System Design of a Search Engine. It is laid out in sections 
beginning with the team organization, code contributions, and features supported by the engine in 
Sections 2 - 4. ​We then discuss the file system footprint, overall query engine performance, and 
overarching architecture in ​Sections 5 - 7. ​In ​Sections 8 - 15​, we summarize the engine’s overall 
architecture as well as the design and performance of each of its eight modules.​ ​We conclude with a 
holistic analysis of the system, its performance, known bugs, potential for future work, and reflections in 
Sections 16 - 20.  
 
Overall, the Maximal Munch Team delivered a distributed search engine with a total index of over 2 TB 
distributed across 12 machines.  The team crawled 150 million pages of the internet (~14 TB of HTML 
content) and indexed 116 million of those pages. From raw HTML to the index itself, we were able to 
achieve over 5x data compression. We developed a distributed architecture for the crawler and indexer 
processes as well as for the full end-to-end query serve engine. This distributed engine enabled scanning 
the index, finding matching results, ranking them, and serving them to the frontend to display to the user.  
 
For many queries, we achieved a serve time of under one second from our full index using a network of 
fourteen machines. While some queries had substantially worse performance, our median response time 
of five seconds, considering our index size, was sufficient for  a minimum viable engine. A more detailed 
breakdown of performance can be found in ​Sections 7 and 15.  
 
The entire search engine, including our template library and search engine components, consisted of 
26,887 lines of code developed over 4 months. The template library was vital to the success of our search 
engine, the most notable module being our hashmap, which had 3x the speed and ⅓ the memory overhead 
of the STL equivalent.  
 
Despite some known bugs, documented in ​Section 16​, and an extensive analysis in ​Section 17​ of 
potential future tasks, we believe the search engine is a minimum viable product in its current state. If it is 
running on enough distributed machines and has a relatively small pool of users, it is able to efficiently 
serve results. The code base is stable and rarely (if ever) crashes, providing the robustness necessary to 
serve the engine to end users.  
 
To our instructors: Nicole Hamilton, Carolyn Busch, and Kevin Li, we understand this report is extremely 
long. ​Sections 2-7​ and ​16-20​ summarize the team dynamics, core results, and reflections on the project 
and the course as a whole. We recommend you certainly read those. ​Sections 8-15​ exist to do justice to 
the development process and features of each module including the challenges encountered during the 
process. Please read or skim those time permitting and at your own leisure (or just look at the figures).   
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Section 2 - Team Organization, Functionality, and Procedures 
 
Our team consists entirely of members who knew each other prior to the class. Daniel, Brandon, and 
Austin attended high school together, while Alex and Adolfo met them through classes at the University. 
Alex met Ryan while working in the Michigan Autonomous Aerial Vehicle Vehicles - Guidance and 
Navigation team, and he was added to the group on the first day of class. 
 
We chose to use an AGILE development process for this team project. The codebase was maintained on 
GitHub, and we used biweekly sprints to track progress. To ensure high code quality of our final 
codebase, all code required at least two peer reviews before being merged into the master branch. 
Additionally, we used Slack for all team communication and had bi-weekly team meetings regularly 
attended by all members. 
 
Since we are all friends with relatively similar schedules, we largely coded as a group; this was 
particularly helpful when people found bugs or ran into roadblocks. Most modules were developed in 
teams of at least two to promote an environment where members could resolve blocking issues together. 
 
In all, we managed to maintain a fairly even work load. Adolfo developed the HTML parser and stemmer 
modules. Brandon, Daniel, and Ryan were the principal crawler developers. Adolfo, Austin, and Ryan 
developed the index. Adolfo, Brandon, and Ryan developed the constraint solver and query serve 
architecture. Daniel developed the query parser. Alex wrote the Ranker. Brandon and Austin developed 
the initial Server. Adolfo and Alex extended the server to the Multi-server distributed architecture.  
 
Section 3 - Code Contributions 
 
This section summarized the total lines of code (LOC) written on this project as well as lines of code per 
team member by submodule. This is detailed in ​Table 1 ​below. 
 

Table 1: Lines of code summary table for the Maximal Munch search engine 
 

Module Submodule 
Total 
LOC 

Adolfo 
Apolloni 
LOC 

Daniel 
Hoekwater 
LOC 

Brandon 
Kayes 
LOC 

Austin 
Kiekintveld 
LOC 

Alex 
Raistrick 
LOC 

Ryan 
Wunderly 
LOC 

HTML Parser 880 880      

Crawler Crawler 
Minion 

1712 
100 

756 656 100  100 

Crawler 
Master 

1710   
1240 

  
470 

Crawler 254  254     
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1 The library was built before Ryan Wunderly joined the team thus he did not have the opportunity to work on it and 
would not be expected to have code contributions in this section. 

Aggregator 

Indexer Stemming 670 670      

Index 
Serialization 

954    
954 

  

Index Build 784 666   118   

ISRs 1027     243 784 

Constraint Solver 350 175  175    

Query Compiler 522  522     

Ranker Static 208     208  

Url 206     206  

Crawl 119     119  

Dynamic 352     352  

Utilities 390     390  

 
 
Server 

Query Serve 348 174  174    

Single Server 774   232 542   

Distributed 
Serve System 

611 183  
214 

 
214 

 

Frontend 695    109 586  

Utilities Chunk 
Checker 

369    
369 

  

Batch 
Rankers 

331 
  

 
 

331  

Command 
Line Engine 

102 
51 51 

    

Team 
Library  1

Hash 
Map/Set 

1346    
1346 

  

Vector 505    505   

Deque 725     725  

Heaps 482    482   

Math 907     907  
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Section 4 - Search Engine Functionality Checklist 
 
Below is a summary table of our search engine’s supported functionality. This outlines all features 
supported and not supported by our engine 
 

Table 2: A summary of all features supported by our search engine 
 

2 These include string functions, conversion functions, sorting functions, etc. 
3 This includes bloom filter, trie, our own unique pointer, etc. 
4 We initially had issues with accidental Distributed Denial of Service attacks. These have been resolved. We 
apologize for any complaints filed by other institutions early on. 

Libraries 

Functions  2 1588 357 450 144 250 387  

Other Data 
Structures  3

1287 
459 

200 228 400 
 

 

Other 141   141    

Test Cases 5888 800 925 925 875 1514 849 

Makefiles 407  70 207 100 30  

Experiments 243  24 75  144  

Total 26887 4515 3252 4411 6150 6356 2203 

Module Feature Supported 

HTML Parser Fully parses HTML pages in a robust manner Yes 

Crawler Hash Map & Hashing Function Chosen Yes 

Manages a frontier of URLs and prioritizes them Yes 

Is polite (robots.txt, does not DDoS anyone, etc.)  4 Yes 

Automatic Recrawl No 

Crawler is crash resistant, automatically restarts, and does not 
lose data on crashes 

Yes 

Retrieves documents over both HTTP and HTTPS and also 
handles redirects 

Yes 

Parallelized by Multi-threading Yes 
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Identifies and suppresses loops, spam, etc. Yes 

Is distributed across a network of machines Yes 

Indexer Determined index file, format, numbering, what attributes were 
captured, and how to gather useful statistics 

Yes 

Demonstrate that you can build a reverse word index as a file 
with a dictionary and a posting list for each token. 

Yes 

Create an index stream reader class that can seek.  Derive word 
and document ISRs. 

Yes 

Constraint Solver Create a derived and working AND, OR, Phrase ISR and support 
parenthesis 

Yes 

Demonstrate working TDRD parsing and compile a query into a 
structure of ISRs 

Yes 

Support Stemming & stop word elimination Yes 

Demonstrate compiling and running a query producing unranked 
results. 

Yes 

Derive and demonstrate container ISRs No 

Ranker Rank using a bag-of-words technique. Yes 

Rank using static page attributes. Yes 

Rank using heuristics or other method considering proximity or 
ordering. 

Yes 

Demonstrate ability to produce a useful 10 best search results. Yes 

Create and use a training set. Yes 

Rank using a neural net or other ML technique. (In the static 
ranker) 

Yes 

Support PageRank or similar. (A ​custom ML trained static ranker 
considers neighboring static / url ranks) 

Yes 

Server & Frontend Create a simple command line interface. Yes 

Create a simple HTTP server as a wrapper UI. Yes 

Report title, clickable URL. Yes 

Serve results from a distributed system consisting of a network of Yes 
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Section 5 - File System Footprint and Index Statistics 
 
Below, ​Figure 1, ​ explains the layout of our filesystem. Our file system has three primary components. 
First, Google Drive for aggregation and and long term storage.  Second, Alex’s desktop which contains 
locally files for testing and an 8 TB drive with a full copy of our index. Third, our digital ocean cloud 
platform which has the entire 2.2 TB index distributed across 13 minion machines. Together this is our 
total file system footprint. Note that each index directory contains a collection of .index file which follow 
the index format in ​Section 10. ​All crawl files contains aggregated pages stored in .agg files.  

 
Figure 1 - Filesystem Footprint Diagram 

 
Section 6 - Query Serve Performance Statistics Summary 
 
When serving queries on a single host (a Dell XPS laptop running 32 GB of RAM and an 8th generation 
Intel i7 processor) with 11 million pages, we found relatively performant results. The median query time 
was 360 milliseconds across 16 test queries that returned an average of 2713 ranked results. We expect 
this benchmark to be representative of a fully distributed system, which would consist of 10 million pages 
per machine. This provides a performance benchmark for each minion machine on modern controlled 
hardware.  
 

machines each with a subset of the index 

Additional Features Index off of a distributed system using several machines Yes 

Associate anchor text with the document it describes in the index Yes 

 Create a snippet to go with reported hit No 
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When serving the whole index (116 million documents) on a distributed system of 13 machines we found 
the search engine had a median query time of 5 seconds. This performance drop off was in part due to the 
older and less capable hardware running on the machines and in part due to imperfect load balancing 
across the cluster. Despite this fact, these numbers are promising considering the size of the corpus, and 
we would expect improved performance with a larger cluster of machines with more computing power. 
 
For further analysis of query performance, see ​Section 16​. 
 
Section 7 - Search Engine Architecture 
 
Our search engine consists of 5 overarching modules: the parser, the crawler, the indexer, the query 
engine, and the frontend. 
 
The parser is the first major module. It accepts raw HTML as input and produces a compact digest form 
suitable for crawl storage and a more processed form for indexing.  
 
The crawler module is composed of a master and a pool of minions. Master is a process which maintains 
a frontier as a priority queue of URLs to crawl and is also responsible for removing duplicates, 
performing URL filtering, and ensuring request politeness. Minions send requests for work to master, and 
receive a set of URLs from the frontier. Each minion maintains a thread pool of workers, which crawl 
each page and save the digested HTML to Google Drive for storage. Once a chunk is processed, the 
minion sends back to master any links found on the pages, along with a request for more work.  
 
The index is the heart of the engine. On the build side, it consumes crawl record files, parses them, and 
compiles the inverted index and document information necessary for queries. This data is serialized to 
disk and deserialized on query side, providing a barebones interface for the query engine.  
 
The query engine, composed of the query compiler, constraint solver, and ranker, attempts to distill the 
essence of what a user is looking for out of a text query, perform a mechanical search process over index 
chunks, and sort results to find the most relevant to the user’s query constraints.  
 
The frontend accepts queries as input, forwards them through the distributed server, and receives a set of 
results, which are displayed for user interaction.  
 
Tying this all together is our library, known as Square One. It includes templates for any relevant data 
structures and algorithms used in the other modules of the engine.  
 
Section 7.1 - Architecture Diagram 
 
This section provides an architecture diagram for both index build and query serve. 
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Figure 2: Architecture diagram of the crawler and index build submodules. Note the distributed 
nature of both the crawler and the index build system. 

 
 

 
 

 
Figure 3: Architecture diagram of the query engine displaying submodules, data storage units, and 

data pathways.  
 

In addition to the pipeline shown above, it is worth noting that the entire system is distributed across 
multiple machines each with a subset of the overall index. See ​Figure 1 ​for a more detailed diagram of 
the filesystem. 
 
Section 8 - HTML Parser 
 
The HTML Parser supports two distinct modes of functionality: initial parsing for the crawl record and 
final parsing for the indexer. The initial parsing for the crawl record is critical as it allow us to efficiently 
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store a record of all pages crawled without recording needless information such as scripts, style 
comments, and images. It also extracts urls and anchor text from the page, which are sent back to the 
crawler. The complete parsing mode strips all HTML, leaving only plain text for the indexer. 
Additionally, it extracts key features that are used by the ranker: anchor text, title, URL, headings, and 
emphasized words.  
 
The HTML parser uses recursive descent parsing and processes HTML in a single pass without any 
copying. The parser is designed to safely error on invalid pages (including deeply recursive tag structures) 
which avoids crashes during the parsing process, allowing the crawler to throw out invalid pages. 
Supporting two modes of operation allows us to perform two independent tasks without adding much 
code complexity, since functions such as tag extraction, tag comparison, and data extraction are shared 
between the modes. 
 
Section 8.1 HTML Parser Performance 
 
The parser itself was robust enough to successfully parse ~90% of pages we crawled. Considering the 
degree of “tag soup” and invalid page formation in our crawl space, we found this impressive.  5

 
By using a preliminary parser to strip useless content out of pages before storing the crawl archive, we 
were able to reduce page size by 50% before storage. This reduction was crucial in order to eliminate 
wasted storage and disk/network I/O.  
 
Section 9 - Crawler 
 
True to its name, the crawler is responsible for crawling the internet and processing web pages, which are 
later used in the index of our search engine. The crawler itself is a distributed system that will be covered 
in detail in the sections below. 
 
Section 9.1 Crawler Architecture 
 
We designed a multiprocess, distributed crawler consisting of a master process and a pool of minion 
processes. Master’s role is to maintain a frontier of pages to crawl, ensure we do not crawl pages that have 
been crawled before, and ensure politeness across the domains that we are crawling. Each minion receives 
URLs, downloads and processes the content, stores the digest to Google Drive, and gives master any links 
found on the page with blacklisted links removed. 
 
The multiprocess design allows us to distribute a fleet of minions across independent machines, including 
cloud servers. Master and minion communicate over TCP sockets to achieve low latency communication 
between processes. The message protocol is defined in ​Appendix C​.  
 

5 ​https://en.wikipedia.org/wiki/Tag_soup  

https://en.wikipedia.org/wiki/Tag_soup
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Section 9.2 - Crawler Master 
Master is responsible for labor management and distribution. To coordinate this, Master maintains a 
priority-queue frontier of URLs, a set of crawled URLs, and a pool of Minion connections.  
 
Master was designed to be as efficient as possible to enable support of a large number of minion 
connections, which means that master interacts with URLs in a very minimal way. Thus time intensive 
processing that needs to occur for a given URL, such as robots.txt and blacklisting, is done by the 
minions. This enables us to better utilize the CPU resources available in our system. 
 
The frontier is a max binary heap ordered by Crawl Rank (see ​Section 13.3​). To minimize memory 
overhead, we cap the frontier size at 3 million links, archiving low quality links to disk. This reduces 
memory overhead and ensures the frontier and hashset are able to fit in RAM.  
 
To keep track of crawled pages, master maintains a hashset of every link ever discovered by a minion. At 
the end of our crawl, this hashset contained 1 billion distinct entries. We developed new strategies during 
our crawl to reduce hashset memory usage; instead of storing url strings, we generated a 64-bit hash of 
each url and stored that hash as an identifier. This reduced our hashset memory by a factor of 10 to a total 
of 8.6 GB at the end of the crawl. 
 
On startup, master creates a socket on a given port number. Minions make a connection to the port for 
each batch of urls they would like to receive. Master assigns a thread to each connection.  
 
Master detects minion crashes by looking for closed connections. In the event of a crash, master 
re-assigns the batch to a new minion. Master is made crash tolerant by backing up its frontier and seen set 
every 30 minutes. The backup operation is atomic, eliminating worst-case risk of losing all state. The 
entire system makes the crawler crash tolerant, preventing loss of pages and ensuring we can seamlessly 
resume crawling in the event of any crashes.  
 
Section 9.3 - Crawler Minion 
Minion is a multithreaded worker process which performs tasks assigned by master. It processes each 
batch by following a producer-consumer relationship. To do so, it maintains its own queue of work and a 
collection of URLs it has gathered from pages. These resources are shared among several threads: a 
gatherer thread, a writer thread, and a pool of processor threads, known as “munchers”.  
 
The gatherer thread is responsible for refilling the frontier when it is empty; when it does so, it pulls a 
new batch from master and places this batch on the local frontier for processing.  
 
Each batch is sequentially processed by a muncher thread. For each link, the muncher connects to the 
website, checks the domain’s robots.txt, and follows any redirects to land at the final page. It then parses 
the webpage and stores the digested HTML. When the batch is complete, the writer thread serializes the 
digested pages to disk then requests a new batch from master.  
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To minimize network overhead, a minion only writes results back to disk and to master after completing 
an entire batch of work; this process is coordinated by the writer thread. 
 
Through these behaviors, the master and minions actively discover and process pages. Because of the 
number of processed web pages, it is imperative to be intentional about the information that is stored.  
 
Section 9.4 Aggregator 
 
When storing a large number of downloaded web pages on one machine, it is crucial to devise a file 
storage strategy that is easily human-readable and does not bog down the file system. Our system stores 
each page as readable text concatenated in a file. This allows us to store data from an arbitrary number of 
scraped pages in one file by simply concatenating the page files together. To manage this, we wrote an 
aggregator program, which combines the page data from a fixed number of files into one aggregate file. In 
this manner, we can store all the relevant information for thousands of web pages with the system 
management overhead of a single file. 
 
Section 9.5 - Storage Strategy 
In order to coordinate a distributed web crawler, it is necessary to manage storage across machines. Our 
method of choice for handling this concern was with Google Drive, which offers virtually limitless 
storage space and access to data across platforms. All machines running minion processes mounted 
Google Drive as a directory, and automatically uploaded their aggregated pages to be further processed. 
 
Section 9.6 - Rate Limiting, Diversity, & Denial of Service Challenges 
 
We initially believed that, with a sufficiently large URL frontier, crawling would naturally diversify. This 
proved to be incorrect when we crashed the servers hosting the website ​soup.io. 

 
We attempted to prevent future incidents like this by penalizing repeat domain occurrences within each 
batch sent to a minion on a per-batch basis. Unfortunately, this proved ineffective in preventing high rates 
of traffic against a single site. While no site ever again received the volume of traffic directed at soup.io, 
the improved system still directed suspiciously high levels of traffic to University of California - 
Merced’s login pages. This problem was reported to us by ITS (we had executed 300,000 queries over the 
course of 20 hours). We mitigated this by developing a global tracking system for the number of times we 
visited each domain name. This global tracking system would begin penalizing pages when they hit 0.1% 
of the last million pages crawled along a custom score which reduced the page’s rank to 0 by the time it 
hit 5% of the last million pages crawled. This upgraded system reduced the peak hit rate (generally on 
domains with extremely high url ranks) by more than 10x.  
 
These changes, however, did not solve all denial of service issues. We were reported one more time to 
ITS: this time for crashing the Duke Law School course login and registration databases. In this case, we 
executed an average of one query every 2 seconds against Duke’s databases for 5 hours. Because these 
were database queries with high amplification factors (large return for a single query), this brought their 
servers down entirely.  
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To prevent any further complaints, we added a randomization factor of ± 20% to our frontier ordering to 
prevent any domain-based URL clumping. This randomized high-ranking links in a virtually identical 
manner to random sampling, preventing clumping and thus any further denial of service complaints.  
 
Section 9.7 - Multi-Threading & LibreSSl Challenges 
 
During our crawl campaign, we noticed that LibreSSL’s libtls appeared to cause a double-free on an 
internal object when many threads were running at once. Austin filed an issue on the LibreSSL GitHub 
repository. A few days later, the developers responded that the context structure contains a 
reference-counted default config object shared across all instances. Multiple threads were having a data 
race on the reference count, resulting in multiple frees of the object. The developers recommended 
locking around the initialization and freeing of the objects. Following this change, we saw a steep drop in 
crawl performance due to contention. After reading through LibreSSL source code, we discovered it is 
safe to have a single context object per thread each with their own thread-local config. As a result, we 
only needed a single lock around the thread local initializations that occur once on program launch, and 
the rest could then be lock-free. As a result, we eliminated the data race and significantly increased crawl 
performance due to increased stability and zero contention around TLS downloading.  
 
Section 9.8 - Crawl Results 
 
Over the course of our crawl, we downloaded and stored 150 million pages. This included crawling 8.4 
million unique domains. After parsing out all unnecessary information from the page (scripts, style 
comments, etc), this lead to a total crawl archive of 7.4 TB of data. During our crawl, we discovered a 
total of 1 billion unique URLs. Our peak crawl rate was 25 million pages per day, and the crawl ran for a 
total of 23 days. This can be seen in ​Figure 4​ below. 
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Figure 4: Our distributed crawl by user’s unique name. Note that in many cases one username 

represents multiple machines. 
 
This figure summarizes total pages crawled over time by host username. It shows both our crawl rate and 
distribution across various machines. The following pie chart in ​Figure 5​ below breaks down crawling by 
host machine. 
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Figure 5: Pages crawled as a percentage by host machine. This shows how many different machines 

we used in our distributed crawl and the importance of a distributed system in achieving our 
document corpus.  

 
From this chart we can see the impact of a distributed crawl; no machine contributed more than 20% of 
our total 150 million crawled pages. We would not have reached these numbers without our peak 
operation of 8 separate minion machines crawling in parallel. 
 
Section 9.9 -  Crawling from the Cloud 
 
Another advantage of distributing our crawler was that we were able to put our crawler on the cloud. 
Through Digital Ocean’s cloud platform, we set up five virtual machines (or “droplets”), which crawled 
with a total of 1000 minion threads. These droplets crawled 60 million pages and achieved a peak crawl 
rate of 25 million pages a day. The total cost of the cloud resources used for the crawl was $15.00 (or ~25 
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cents per million pages). This was enormously successful and demonstrated the feasibility in scaling 
crawling indefinitely with cloud machines.  
 
Section 10 - Indexer 
 
The following sections detail the indexer module. We cover the index format, how we serialize and 
deserialize the index, the index build system, and the overall index build performance.  
 
Section 10.1 - Index Format 
The index format was designed to be trivially parallelizable, both on the build and serve side, by 
separating it out into a series of “chunk” files. Each chunk is fully capable of serving queries for the 
documents it contains and was built independently of all other chunks.  
 
The file format begins with a prefix, including version number, to verify compatibility. The prefix 
contains all length fields necessary to locate other sections of the file.  
 
Next are the reverse-index and the term storage segments. The reverse index segment is a series of 
fixed-size key-value pairs, and we store all terms concatenated together with no delimiters. The key is an 
offset into term storage, and the value is of an offset intoto a seek table. Given more time, we would 
modify this format to serialize the hashmap directly into the file for memory efficiency on the serve side.  
 
The seek tables are an intermediate step between the reverse-index and the posting lists. Each seek table 
contains a count of posting list entries and a constant size table from absolute location to byte offset into 
the posting list, and each seek table is stored sorted by absolute location. Our largest posting lists rarely 
exceed the 32 memory pages required to make larger table sizes worth the space overhead to reduce 
paging. This size incurs an overhead of 512 bytes per posting list in each chunk however, and it makes up 
a significant portion of our index size overall (~62% - see ​Figure 6)​. To reduce waste, we distribute the 
seek entries evenly across the posting list while serializing. Given more time, we would move to a 
dynamically sized table to reduce paging further. ​Figure 6​ shows the distribution of memory used by each 
portion of the index. 
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Figure 6: Memory utilization (as a percentage) by entry type in our index 

 
Clearly seek tables have by far the most memory allocation and require the most work in terms of further 
optimizations. The posting lists themselves are stored extremely efficiently. Each post location is 
serialized as a delta from the previous post location, which is encoded using Variable Length Quantity, 
commonly used in the MIDI file format. VLQ encodes integer byte sequences in base-128, leaving off 
leading zero bits and using the high bit of each byte to denote the end of an integer. This results in our 
posting lists being a small portion of our chunk size (~31%), and helps to reduce paging.  
 
The remaining two segments of the chunk are the document index and storage. These segments are what 
allow us to look up a document for a given location/post, and retrieve information about a document. 
Document storage stores variable length fields, while the document index stores the fixed field 
information. Storing the document index sorted by start location lets us binary search for lookup.  
 
Section 10.2 - Index Serialization/Deserialization 
The serialization step takes in a mapping from term (string) to posting list (sequence of absolute locations 
in the index), and a list of documents from the build system. It then translates the data into the previously 
mentioned file format. This is done by iteratively building up a representation in memory using 
dynamically allocated containers, truncating a file large enough to store the full size, and directly writing 
the bytes through a memory mapping. This process could potentially be made more efficient by writing to 
multiple growing segment files, and then merging these into a full chunk rather than building a copy of 
the whole file in memory.  
 
On the deserialization side, the prefix segment allows us to create a lightweight representation of an index 
chunk that only stores pointers into the different segments on disk. The shared data types between 
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serialization and deserialization ensure that the data is interpreted exactly as it was written, and the 
version number and prefix fields sanity checks the shared interpretation. Deserialization does not perform 
the expensive step of re-building our reverse index hashmap in memory, it only provides access to the 
key-value array. A higher-level chunk abstraction exists which is able to perform this conversion at 
construction, and still avoids bringing the term storage from the file into memory. This keeps the cost of 
reading a chunk as low as possible. All other information is stored directly in the file, and does not require 
copies or writes while reading the index chunk.  
 
Section 10.3 - Index Build System 
 
The index build system itself is a producer-consumer system. It takes in the aggregate (.agg) files from 
disk and parses them into a document structure with key information stored in fields. These structures are 
produced by a thread pool while the vector of generated documents is not full. Meanwhile, a separate 
thread consumes these documents and writes them into our three index chunks: the good chunk, the bad 
chunk, and the anchor digests chunk. Our index is partitioned to improve query serve by separating 
documents by static rank into a good index and bad index. When a given chunk reaches a predefined max 
capacity, it is serialized to disk. This entire process is summarized in the ​Figure 7​ below.  

 
Figure 7: The index build process. This figure summarizes the process for computer aggregated 

crawled documents files to index chunks.  
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Section 10.4 - Index Build Distribution 
 
Because index chunks can be built entirely in parallel from separate .agg files of crawled pages, we could 
trivially distribute index build. Our index build was distributed across three separate machines, 
substantially increasing the index build rate; in a production search engine, this could be extended even 
further. Moreover, because all files were available on Google Drive, physical data transfer on disk was 
unnecessary. Instead, each index build machine could pull the necessary files to index directly from 
Google Drive. 
 
Section 10.5 - Index Performance 
 
Our multithreaded index build supported a build rate of 15 million documents a day per machine. We 
completed index build on a network of 3 machines over the course of 5 days. Additionally, our index 
serialization yielded high compression rates for our index; our crawl archive was compressed by a factor 
of 3x when building our index. This is shown in ​Figure 8 ​below. 
 

 
Figure 8: Total size of crawled data compared against archived page size and index size 

 
Here we see the high level of compression from raw HTML to the index itself. The HTML parser 
removed ~ ½ the content before archiving the page. The index then further compressed this data by factor 
of 3. This allowed us to convert an approximately 14 TB of raw crawled pages into a 2.2 TB index. This 
was critical to search engine performance as there was substantially less data on disk to traverse during 
query serve. 
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Section 11- Query Parser 
The query parser translates a search into tokens bound by a relationship given by a specific grammar 
parse tree. It is implemented as a top-down recursive descent parser, a style of parser known for its 
modularity and elegant simplicity. The query parser that we implemented in our project is a combination 
of Google query language and the language specified by Nicole Hamilton. It supports all recommended 
language features as well as numeric ranges (denoted by ##..##), stop word elimination, stemming, string 
cleaning, and intersection (ANDing) of adjacent words. 
 
Section 12 - Constraint Solver 
The constraint solver takes the results from the  query parser and uses logical stream readers to return 
pages from the index that contain the keywords. An example would be the search ​the University of 
Michigan​. The Query Parser would return the ISR parse tree [(univers OR univers*) AND (michig OR 
michig*)] (note stemming, casing, stopword elimination, and decoration to search for anchor text), and 
the constraint solver would traverse the index with this ISR tree finding all matches. 
 
Section 12.1 - Constraint Solver Design 
 
The constraint solver is implemented as a multithreaded process, which handles several chunks in 
parallel. It clones the ISR tree from the parser into an arbitrary number of copies, runs each across a 
subset of index chunks, and combines the results. Since our index is partitioned, we initially only solve 
over the “good index”. If we do not generate at least 1000 matches on the good index (on each distributed 
machine), we then go to the index of remaining pages to generate additional matches. Since the “good 
index” only consists of 20% of total pages this allowed us to increase performance by 5x on many 
common queries.  
 
The constraint solver takes an index (a vector of memory mapped chunks) by reference from the high 
level query serve process. Then, in separate threads, it scans the ISR trees over the chunks in the index 
and merges the results from each thread together into a final set of matches. The constraint solver takes 
care to consolidate anchor text matches for a single URL into a single object used by the ranker. These 
matches are then returned to the query serve engine, which passes them to the ranker. 
 
Section 12.1.1 Thread Pool Design 
 
For the constraint solver, we experimented with thread pools of varying size, ranging from two threads 
total to one thread per index chunk. We saw no improvement by using one thread per index chunk, largely 
because disk I/O was the limiting factor. In the end, we settled on a thread pool of ten threads total, which 
maximized performance in testing. 
 
Section 12.2 - ISR System Design 
 
Index Stream Readers (ISRs) are the core of the constraint solver because they find the desired tokens or a 
combination of child ISR matches in the index. Our system uses Word, Intersection (AND), Union (OR), 
Not, and Phrase ISRs. These ISRs are derived from a base ISR class; this fact allowed for the 
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parser-generated ISR tree to take advantage of a polymorphic interface of token retrieval. ISRs interfaced 
with the index to access posting lists and document metadata. The interface, ​index-serve​, defined iterators 
to move around that index so that ISRs were not dependent on index implementation. This design 
decision made ISRs robust to changes in index content and also allowed for parallel development. 
 
Section 12.3 - Constraint Solver Performance 
 
Initially, page table lookups in the operating system were the bottleneck for the entire query serve engine. 
Because our loaded index was a 2.2 TB memory mapped file, the entire index was never paged into 
physical memory; not even the index hashmaps could fit entirely in memory. This lead to continuous 
thrashing and horrible performance. The operating system would thus have to go to disk, locate the 
appropriate pages that matched virtual memory and load all the necessary 4K pages into RAM. This load 
process took over 99% of total constraint solver time. We observed this behavior by the fact that repeated 
queries (even those that occurred several hundred queries and over an hour later) were served in 1/100th 
of the time. We resolved this issue by distributing query serve across several machines (documented in 
Section 14.1​), each hosting a ~170 GB index with ~10 million pages. Page faults were no longer the 
constraining factor, and constraint solver performance was improved by a factor of 100. The constraint 
solver on average takes ~1000 ms to generate all matches for a given query on the entire 116 million 
document index.  
 
Section 13 - Ranker 
 
The overall purpose of the ranker is to prioritize the ordering of results shown to the user. In effect, it 
takes all matches from the constraint solver and develops an ordering over them specified by the query. In 
designing the rest of our search engine, we noted that elements of the ranker could also be quite useful for 
the task of prioritizing crawl order. We decided to divide the ranker into 4 components: the URL, 
Crawler, Static, and Dynamic Rankers, which will be explained in the coming sections. Division into 
modules enables reuse between webpage ranking and crawling, promotes good encapsulation, and makes 
tuning of individual ranker performance substantially simpler.  
 
Each ranker has a function to extract features from an input then a function to produce a rank from these 
features. By convention, ranker features are all non-negative. Negative values are used to indicate that the 
ranker input was invalid and should not be considered. The separation of feature extraction is vital in 
situations such as index build where we wish to only store the dense feature. 
 
Section 13.1 - Url Ranker 
 
The URL Ranker gives the quality of a url. It is used as a submodule of the Static and Crawl rankers. 
 
First, we implemented the obvious features of protocol and extension ranks by hand, designing values as 
shown in ​Appendix A. ​To scientifically determine what features might be useful, we scraped urls from 
Reddit and extracted an excessive number of features from them, detailed in ​Appendix B. ​Relative 
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importances of these features was determined using an Extra Trees Regressor (ETR) and can be seen in 
the chart below. 

 
Figure 9: Extra-Trees Importance of Experimental URL Ranker Features 

 
Clearly, the ETR determined that many features other than the leftmost “obvious” features are important. 
We further refined these features over the course of ranker development, eventually deciding on a final 
feature set that can be seen in ​Figure 10​: 
 

 
Figure 10 - Final URL Ranker Features and Weights 
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Initial versions of the url ranker used a direct linear combination of these features, but we eventually 
created hand-designed piecewise nonlinear functions, which we apply to the features before weighting. In 
Python, we experimented with deep learning systems to automatically and empirically learn these 
nonlinearities, but we were unable to deploy these models due to the time investment that would have 
been required to implement the necessary matrix math. 
 
Section 13.2 - Static Ranker 
 
The Static Ranker returns the quality of a given HTML page without respect to any query. The Static 
Ranker uses the URL Ranker as a submodule. Our Static Ranker makes the additional assumption that 
only English pages should score highly. 
 
Most static ranker features are ratios of the lengths of certain portions of the HTML digest. These are 
covered in detail in ​Appendix D​. We also implemented some novel features to achieve our goal of 
detecting non-English or spam websites.  
 
Stopwords are not stripped from HTML digests until the index build phase, so we count their number in 
the Static Ranker. We use a nonlinear function of this count to detect spam pages, as pages with too few 
stopwords are clearly keyword spamming. Our exact list of stopwords can be found in ​Appendix A​. 
 
To improve crawl performance, we implemented Englishness detection in the Static Ranker. To do this, 
we count the frequency of each A-Z character and compute its difference from a pre-determined 
distribution using Jensen-Shannon Divergence. This allows us to detect any pages which do not use 
characters with approximately the correct frequency, which helps to filter out any script pages, 
stylesheets, or foreign language pages which make it through our other methods of filtering​ ​A graph 
showing effective splitting of English and non-English pages can be found below in ​Figure 11​: 
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Figure 11 - Distribution of English and chinese pages 

 
From the figure above, we see distinct curves for English and Chinese pages with little overlap, allowing 
effective detection and elimination of foreign pages (particularly Chinese). We also developed our static 
ranker weight and features which are shown in the plot below: 
 

 
Figure 12 - Final Static Ranker Weights 
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In a larger system, we think the Static Ranker could be improved dramatically. All the features we have 
extracted are attempts to infer the quality of a page, however in a system with actual users we would be 
able to directly measure this by seeing what domains are most commonly clicked on the frontend. Other 
teams used Alexa domain rankings to emulate this, however we initially avoided this. It was eventually 
implemented as a Dynamic Ranker feature for reasons which will be discussed in ​Section 13.4​. 
 
Section 13.3 - Crawl Ranker 
 
The Crawl Ranker prioritizes the order in which links are crawled by scoring them before insertion into 
master’s frontier. Since master also periodically prunes its priority queue, the scores given by the Crawl 
Ranker indirectly determine which links are crawled and which are not.  
 
We designed our Crawl Ranker to minimize the overhead of content sent over IPC. It accepts the URL as 
input as it is very rich in features and introduces no overhead since it is required by other parts of Master. 
We decided to add one additional feature to be sent over IPC - the static rank of the source page a link 
was found on. This feature is very dense since it encodes all the Static Rank features discussed above. We 
make the “PageRank assumption” that URLs found on high static rank pages will generally be higher 
quality than those found on low rank pages. Computing these Static Ranks on Minion means we save the 
cost of sending the full HTML page to master. It also naturally distributes the CPU load of computing the 
Static Ranks across our thousands of minion threads. 
 
Towards the end of our project, the Crawl Ranker also took on some responsibility for politeness. We 
added a random noise feature with an approximately 20% weighting which served to break up clusters of 
URLs from the same site to prevent over crawling of any particular domains and accidentally Distributed 
Denial of Service attacks (DDos). 
 
Section 13.4 - Dynamic Ranker 
 
We decided that our dynamic ranker would operate on four decorated streams of information from the 
index - URL, Title, Headings and Body text. It breaks down any query into a list of stemmed tokens, then 
extracts the number of matches for these streams.  For each stream it computes the number of OR, Phrase 
and Rarest Word Intersection matches. We augment these index based features with the Static Rank. This 
results in 12 analyzed features. 
 
The features extracted by the Static Ranker are stored in the index as a dense vector so that we can 
include Static Rank at this step without access to the raw HTML.  
 
We also include a score for the domain extracted from Alexa Top Pages. As mentioned in ​Section 13.2 
we initially avoided directly taking another company’s website ranking, instead opting for a purely ML 
static ranker. At the point we added it it was too late to add it to the static ranker since its features were 
already baked into the built index. Thus it was added to dynamic ranking, which also has access to page 
urls. 
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Below are the weights used in the linear combination of these features.  

 
Figure 13 - Dynamic Ranker Weights 

 
Note that body features appear very low weighted, however they often have significant contribution to 
rank due to the high values of the features themselves. 
 
Section 14 - Server 
 
The server is the final C++ module of our search engine. It interfaces with the frontend to receive user 
queries and then calls the query serve function itself to return ranked results back to the user. The server 
receives the query as JSON from the frontend. It then parses this JSON to get  a query from the user and a 
particular page of results they want. It then calls the query serve function which returns a sorted vector 
ranked results. The server can then run the safe for work filter (SFW)  as needed to generate final results. 
It generates the set of 10 results for the particular page requested, encodes it as JSON, and returns it to the 
frontend for display.  
 
Section 14.1 - Distributed Serve System 
 
The above architecture lays out how a single server system would function however to increase query 
serve performance we created a distributed server to work with a network of machines. Each minion 
machine has an index of ~1/13th of the pages we have indexed and only by aggregating the results back 
from all of the machines can the multi-server gain a complete set of results. We chose to implement the 
distributed system at the server level with a multi-server and a minion server.  
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Each minion machine operates a minion server. It is a simplified server that returns all results in JSON for 
any query received. When the multi-server receives a query it then queries all minion servers over the 
network with the query received. They return their vector of ranked results as JSON following the general 
server process listed above. The master server then aggregates all of these results, it sorts the results and 
then returns appropriate pages of results to the frontend.  
 
The master server is a very lightweight process while the minion servers do all the work. The only 
computation involved on the master server is caching recent query results and sorting the aggregated 
vector of results from the minion server. By creating the distributed serve system we were able to reduce 
average query time on the full index by a factor of ~200 by eliminating most thrashing.  
 
 
Section 15 - Frontend 
 
An initial frontend was developed using Bootstrap and Vue.js. The frontend used in our live demo 
implemented with Webpack, Vue.js and Bulma. It features an “About Us” Page, Landing Page and 
Results Page. It was developed using a global store model but did not use libraries such as Vuex to 
manage this store. In ​Figure 14 ​below is an image of the Munch home page. 

 
Figure 14: The Maximal Munch home page.  

 
The results page contains a variety of features for customizing and displaying search results. It features 
user friendly messages for cases where results returned no results. It has an interactive page selector for 
querying additional results in increments of 10 per page. It has a google-inspired tagline at the top of each 
set of search results which displays the number of results, time taken, and index size. It also has controls 
for the Safe For Work (SFW) mode which screens for explicit content. The SFW mode also warns users 
when > 20% of their results were filtered incase they would like to turn it off and see the full set of query 
results. In ​Figure 15 ​below is an image of a sample query in the Maximal Munch Engine. 
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Figure 15: The results page of the Maximal Munch engine. Note the page selector and “Safe for 

Work” mode check box.  
 
 
The frontend also validates queries to ensure they are nonempty, and prevents users from submitting new 
queries until their previous one returns information. This was essential to supporting a semi stable live 
class demo serving to multiple users as otherwise users inevitably DDoS our servers by repeatedly 
querying without a delay. 
 
All of the above listed features are supported by fields in the JSON response sent by the backend. The 
frontend requests results from the backend by prepending its get request with a “search?” token then 
appending parameters. For example “server.com/search?page=eecs+398&page=0&sfw=true” requests 
results for “eecs 398” on page 0 with safe search enabled. Queries are “url encoded” to support this by a 
javascript library, then are parsed on the backend side by splitting on & characters.  
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Section 16 - Example Queries & Performance 
 
While the query engine performance was summarized in in ​Section 6​,​ ​we will provide a more detailed 
breakdown of performance here. Below is a table of sample queries run on a single machine 
(representative of the performance of a target minion process). This machine served an index of 11 
million documents which is approximately the target size for each machine in the distributed query serve 
system.  
 

Table 3: Summary of query result performance for a single  machine serving 11 million pages.  
 

Query # of Results Time (ms) Time per result (ms) 

"detroit tigers" 1925 54 0.03 

"Nicole Hamilton" 2 61 30.50 

"spacex launch" 469 76 0.16 

cppreference 127 104 0.82 

"blueberry pie" AND 
recipe 84 209 2.49 

"ford pickup truck" 71 210 2.96 

"alfa romeo" 4038 288 0.07 

spacex 4003 331 0.08 

spacex launch 2713 356 0.13 

parker solar probe 284 750 2.64 

"Cherry Pie" 677 900 1.33 

"Michigan Football" 6583 1120 0.17 

"vladimir putin" 8384 1126 0.13 

"vladimir putin" AND 
"donald trump" 3323 1732 0.52 

"university of michigan" 20,256 2947 0.15 

wikipedia 142,369 13558 0.10 

wikipedia linux "operating 
system" 2797 14,887 5.32 

Average 11653 2277 2.80 

Median 2713 356 0.17 

1st Quartile 284 209 0.13 

3rd Quartile 4038 1126 2.49 
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From the table above we can see a couple of insights. In our distributed system, serving ~11 million pages 
on each machine in the cluster seems reasonable as we have a median query time of 0.36 seconds. We can 
also take note of a couple of outlier results. Particularly ​wikipedia linux "operating system" ​which had a 
query time of ~15 seconds. This was due to the complexity of the query. The ranker currently takes 
substantially longer to rank long and complex queries than simple ones.  From the rightmost column you 
can see the general trend that response time per result rises as number of searched words increases. 
Additionally we can see the ranker also has performance which is linear with number of matches. The 
wikipedia ​query exemplifies this performance as it took a very long time due to over 100,000 results 
ranked.  
 
The next table illustrates performance on our distributed system. This was a cluster of 13 machines each 
running with 16 GB of RAM which served and index of 116 million documents.  
 
Table 4: Summary of query result performance for a distributed cluster serving 116 million pages 

 
Query # of Results Time (ms) Time per result (ms) 

"detroit tigers" 21267 5302 0.25 

"Nicole Hamilton" 76 568 7.47 

"spacex launch" 9346 1733 0.19 

cppreference 1797 970 0.54 

"blueberry pie" AND 
recipe 1048 2497 2.38 

"ford pickup truck" 1099 3148 2.86 

"alfa romeo" 53213 10019 0.19 

spacex 41393 12069 0.29 

spacex launch 34835 5481 0.16 

parker solar probe 3625 4451 1.23 

"Cherry Pie" 7320 3431 0.47 

"Michigan Football" 11454 4332 0.38 

"vladimir putin" 40497 9613 0.24 

"vladimir putin" AND 
"donald trump" 31604 5977 0.19 

"university of michigan" 189,319 32804 0.17 

wikipedia 295,821 23385 0.08 

wikipedia linux "operating 29325 24,078 0.82 
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Here we can see that, by distributing query serve, we maintained decent performance even as our index 
size grew. The performance did drop by a factor of ~10. This is in part because the hardware on our 
distributed cluster was worse both in terms of CPU and RAM. Additionally, performance dropped 
because we didn’t perfectly load balance our index across the distributed machines. You are forced in the 
distributed architecture to wait for the slowest machine to return results so this imperfect balancing 
substantially hurt performance. There is certainly room for improvement on these performance numbers; 
this can be done with a combination of code improvements and a larger cluster of distributed machines 
but we have successfully demonstrated a system capable of delivering a minimum viable search engine 
over a multi-terabyte corpus.  
 
Section 17 - Known Bugs 
 
Below is a list of known bugs in the search engine. These would all need to be resolved before it could be 
turned into a product 

1. In the last 4 days and 45 million documents of crawling, Master segfaulted once of unknown 
origin. 

2. Because the Ranker is linear in time-complexity with number of search results to rank. It 
struggles on queries that return a large number of matches. This less of a bug and more of a 
performance issue that should be resolved by speeding up the Ranker module.  

3. The Not ISR is not fully implemented. It is in the codebase but has a known bug causing the 
engine to sometimes return zero results. As a temporary solution we have disabled it in the query 
language.  
 

Section 18 - Future Work and Extensions 
 
While we have demonstrated a fully functional search engine with a large index and efficient crawl 
process, there is still room for improvement and extension. Particularly, there is a list of extensions that 
we would need to make before delivering a production version of the Maximal Munch engine.  This 
section summarizes key extension areas including: automatic re-crawl, shingling, index sorting, early exit 
and other performance enhancements such as sharding and cutting off slow machines during query serve.  
 

system" 

Average 45473 8815 1.05 

Median 21267 5302 0.29 

1st Quartile 3625 3148 0.19 

3rd Quartile 40497 10019 0.82 
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The crawler needs two key enhancements before delivering a close to production variant: automatic 
re-crawl and shingling. The first is relatively easy: we just need to timestamp index chunks, then develop 
a module to pull all of the pages out of them and have the crawler recrawl from that list of urls. Shingling 
is more complex but necessary to provide relevant and unique search results. At the moment we 
frequently crawl close to duplicate pages. For example, we have crawled the same pages from 
Wikipedia’s mobile and desktop versions. This is redundant information (wasted crawl time) and also 
leads to somewhat odd query results where we display both the mobile and the non-mobile variant. 
Shingling should resolve this, increasing the diversity of both pages crawled and pages served. 
  
The subsequent three improvements relate to performance of query serve. Creating a distributed system 
has lead to a much faster query serve side; however, to support volume requests, we need to increase both 
throughput and decrease response time. Index sorting and ranker early exit would decrease response time. 
At the moment, we rank all pages found by the constraint solver. When a large number of results are 
found, the ranker can take several seconds. By sorting the index by quality (static rank) we could ensure 
that, in most cases, the first constraint solver matches would be the top ones. Then, we could implement a 
ranker cutoff system where, if no top 10 or top 25 results were found in the next n pages analyzed, we cut 
the ranker off. With a sorted index, this would  significantly reduce response time without dramatically 
reducing. We initially implemented this method on our search engine; however, the degrade in recall was 
too high as our index was not well sorted. The final suggested improvement is sharding. Since we have a 
distributed system we could serve off of several banks of machines (each bank containing a whole index). 
Our master server could shard the results and send it to one of n banks of machines. This would 
parallelize serve across multiple queries increasing throughput. By combining all 3 of the above 
improvements, we believe with enough machines we could deliver an initial production search engine.  
 
Section 19 - Reflection & What We Would Change 
 
In retrospect, there is a clear difference in difficulty between working within your sandbox and working 
with the outside world. Thus, the two modules that required the most work in terms of robustness and 
debugging were the crawler and HTML parser because they had to interface with the rest of web 
standards and rules that are rarely followed. They had to handle complications such as slow servers, bad 
connections, malformed HTML, and early terminated connections. The query serve side was much easier 
in this regard, as we had complete control over all interfaces and inputs. The query serve side was by no 
means easy, but it was not plagued with months of unexpected bugs and crashes. Despite these 
challenges, our search engine was quite successful and stable; however, it took substantially more 
development time on the edge of our sandbox to complete than we anticipated. 
 
However, if we rebuilt our search engine from scratch, we would make several design changes. Safe for 
work mode would be stored as metadata in index build. We could analyze the entire text in this situation 
without performance implications and, since this is static data, there is no need for it occur on the serve 
side. Alexa ranking would be part of static rank; this would require an index rebuild, which is why it 
didn’t occur. We would also constraint solve and rank at the same time to take advantage of memory 
locality (a producer-consumer relationship). At the moment, the constraint solver runs sequentially after 
the ranker. That is to say the constraint solver finds all matches before forwarding them to the ranker 
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This is not cache-local and leads to an increased rate of page faults when compared to simultaneous 
constraint solving and ranking. By changing this architecture, we would significantly increase 
performance. Together, these modifications would provide substantial performance enhancements over 
the current architecture. 
 
Section 20 - Reflection on the Course 
 
Overall, we found the course to be a superb exercise in designing a complex system from the ground up 
and in developing a massively parallel and distributed system. Before the class, most of our team had 
close to no experience writing multithreaded or multi-machine code. This course was an important 
learning opportunity in that area. Additionally, we all improved in our ability to architect and write data 
structures from scratch because we built our own template library. The course was incredibly enjoyable 
and fulfilling because we were able to deliver a functional system at the end of it. It certainly met the 
three goals of teaching us multithreaded and distributed systems, teaching us from-scratch architecture, 
and allowing us to create a final product to talk about in interviews and on our resume.  
 
We would suggest a couple of improvements for the course as a whole. First, we would recommend being 
more upfront with which parts of the STL are allowed and which are not. In the end, we believe we 
followed the instructor’s intentions, which were to require us to build important data structures from 
scratch (hash map, heaps, sorts, etc.) while allowing us to use portions of the STL which were not part of 
the core search engine code. Like std::cerr for error logging, and other very basic templates. However, we 
think that this was not easy for every group to realize. We would also recommend getting groups started 
on the engine earlier. Even with our team working hard from the start, there was still a massive time 
crunch to deliver the final engine. Lastly, we suggest instructing everyone to randomize their crawl at the 
very beginning so that teams do not receive complaints on politeness. We take full responsibility for the 
complaints filed against us, but requiring all teams to randomize their crawl would likely reduce the odds 
that future teams crawl too aggressively. 
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Appendix A - Ranker Configuration Files  
 
 

Stopwords​: the, be, to, of, and, in, that, have i, it, for not, on with, as, at, an, so 
 
Words considered to be “useless” if found in anchor text​: here, link, this, click, go, follow, see, load, 
email, article, page, download 
 
  

Domain Extension Ranks: 
 

 

Security Protocol Ranks: 
 

 

Domain 
Extension 

Value 

com 0.7 

org 0.7 

edu 0.85 

gov 0.85 

biz 0.3 

io 0.8 

net 0.5 

default 0.35 

Protocol Value 

http 0 

https 1 

default  -1 
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Appendix B - Experimental URL Ranker Features 
0. Bias feature - fixed to 1. Acts as an offset or intercept value. 
1. Protocol rank - Determined from the config table in ​Appendix A 
2. Domain name length  
3. Domain extension rank - Determined from the config table in ​Appendix A 
4. Length of total url  
5. Englishness of url - logistic cross entropy of the character distribution of the url with a predetermined 
english character distribution. Values indicate distance from english. 
6. . count - number of ‘.’ characters in the input 
7. . sum - sum of the lengths of the ‘.’ delimited sections of the url 
8. . mean - mean of the lengths of the ‘.’ delimited sections of the url 
9. . max - length of the longest ‘.’ delimited section of the url 
10. . min - length of the shortest ‘.’ delimited section of the url 
11. . range - (max - min) of the lengths of the ‘.’ delimited sections of the url 
12. . var - variance of the lengths of the ‘.’ delimited sections of the url 
13. - count - number of ‘-’ characters in the input 
14. - sum - sum of the lengths of the ‘-’ delimited sections of the url 
15. - mean - mean of the lengths of the ‘-’ delimited sections of the url 
16. - max - length of the longest ‘-’ delimited section of the url 
17. - min - length of the shortest ‘-’ delimited section of the url 
18. - range - (max - min) of the lengths of the ‘-’ delimited sections of the url 
19. - var - variance of the lengths of the ‘-’ delimited sections of the url 
20. / count - number of ‘/’ characters in the input 
21. / sum - sum of the lengths of the ‘/’ delimited sections of the url 
22. / mean - mean of the lengths of the ‘/’ delimited sections of the url 
23. / max - length of the longest ‘/’ delimited section of the url 
24. / min - length of the shortest ‘/’ delimited section of the url 
25. / range - (max - min) of the lengths of the ‘/’ delimited sections of the url 
26. / var - variance of the lengths of the ‘/’ delimited sections of the url 
27. _ count - number of ‘_’ characters in the input 
28. _ sum - sum of the lengths of the ‘_’ delimited sections of the url 
29. _ mean - mean of the lengths of the ‘_’ delimited sections of the url 
30. _ max - length of the longest ‘_’ delimited section of the url 
31. _ min - length of the shortest ‘_’ delimited section of the url 
32. _ range - (max - min) of the lengths of the ‘_’ delimited sections of the url 
33. _ var - variance of the lengths of the ‘_’ delimited sections of the url 
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Appendix C - Master/Minion Message Protocol 
Each message between master and minion (except for work_request) consists of a request header 
followed by the message type. The header defines the necessary data to parse the message and is 
standardized, while the message contains a variable sized list of urls. All messages are null terminated. 
Minion first issues a work request to connect to master. Master sends a CRAWL_THIS message which 
contains a batch of urls. For each page that is crawled minion sends a PAGE_URLS message so that 
master can log the new urls that were found. 
 
Request Header 
WORK_REQUEST: WORK_REQUEST\0 
CRAWL_THIS: CRAWL_THIS <NUM_URLS_IN_LIST>\0 
PAGE_URLS: PAGE_URLS <SOURCE_PAGE> <PAGE_RANK> <NUM_URLS_IN_LIST>\0 
Message Formats 
CRAWL_THIS: <URL> <URL> … <URL>\0 
PAGE_URLS: <URL> <URL> … <URL>\0 
 
Appendix D - Static Ranker Features 
 

1. Bias feature, pinned to 1 
2. Body length 
3. Body english divergence 
4. Stopword density per body length 
5. Title length 
6. Title english divergency 
7. Heading density 
8. Length of <head> divided by body length 

 


