
Final Report Page 1

Maximal Munch Search Engine - Final Report
April 22, 2019

Final Report Page 2

Table of Contents

Team Maximal Munch 4

Section 1 - Executive Summary 5

Section 2 - Team Organization, Functionality, and Procedures 6

Section 3 - Code Contributions 6

Section 4 - Search Engine Functionality Checklist 8

Section 5 - File System Footprint and Index Statistics 10

Section 6 - Query Serve Performance Statistics Summary 10

Section 7 - Search Engine Architecture 11
Section 7.1 - Architecture Diagram 11

Section 8 - HTML Parser 12
Section 8.1 HTML Parser Performance 13

Section 9 - Crawler 13
Section 9.1 Crawler Architecture 13
Section 9.2 - Crawler Master 14
Section 9.3 - Crawler Minion 14
Section 9.5 - Storage Strategy 15
Section 9.7 - Multi-Threading & LibreSSl Challenges 16
Section 9.8 - Crawl Results 16

Section 10 - Indexer 19

Section 11- Query Parser 23

Section 12 - Constraint Solver 23

Section 13 - Ranker 24
Section 13.1 - Url Ranker 24
Section 13.2 - Static Ranker 26
Section 13.3 - Crawl Ranker 28
Section 13.4 - Dynamic Ranker 28

Section 14 - Server 29

Section 14.1 - Distributed Serve System 29

Section 15 - Frontend 30

Section 16 - Example Queries & Performance 32

Final Report Page 3

Section 17 - Known Bugs 34

Section 18 - Future Work and Extensions 34

Section 19 - Reflection & What We Would Change 35

Section 20 - Reflection on the Course 36

Appendix A - Ranker Configuration Files 37

Appendix B - Experimental URL Ranker Features 37

Appendix C - Master/Minion Message Protocol 38

Appendix D - Static Ranker Features 38

Final Report Page 4

Team Maximal Munch

Brandon Kayes – CSE – Sophomore
280 IA, 281, 370 - Career in Industry

Ryan Wunderly – CSE – Junior
482, 445 - Robotics & Computer Vision

Alexander Raistrick – CSE / Math Minor – Junior
Extensive self study in machine learning – Career in Research

Austin Kiekintveld – CSE – Sophomore
281 IA, 370, 388 – Systems Programming & Security

Adolfo Apolloni – CSE – Junior
Industry Autonomous Vehicle Experience & 281, 388, 370 - Autonomous & Intelligent Systems

Daniel Hoekwater – CSE / Business Minor – Sophomore
281, 370, ENTR 390 – Career in Industry

Final Report Page 5

Section 1 - Executive Summary

This report describes in detail the entire Maximal Munch search engine created by Adolfo, Alex, Austin,
Brandon, Daniel, and Ryan in EECS-398: System Design of a Search Engine. It is laid out in sections
beginning with the team organization, code contributions, and features supported by the engine in
Sections 2 - 4. ​We then discuss the file system footprint, overall query engine performance, and
overarching architecture in ​Sections 5 - 7. ​In ​Sections 8 - 15​, we summarize the engine’s overall
architecture as well as the design and performance of each of its eight modules.​ ​We conclude with a
holistic analysis of the system, its performance, known bugs, potential for future work, and reflections in
Sections 16 - 20.

Overall, the Maximal Munch Team delivered a distributed search engine with a total index of over 2 TB
distributed across 12 machines. The team crawled 150 million pages of the internet (~14 TB of HTML
content) and indexed 116 million of those pages. From raw HTML to the index itself, we were able to
achieve over 5x data compression. We developed a distributed architecture for the crawler and indexer
processes as well as for the full end-to-end query serve engine. This distributed engine enabled scanning
the index, finding matching results, ranking them, and serving them to the frontend to display to the user.

For many queries, we achieved a serve time of under one second from our full index using a network of
fourteen machines. While some queries had substantially worse performance, our median response time
of five seconds, considering our index size, was sufficient for a minimum viable engine. A more detailed
breakdown of performance can be found in ​Sections 7 and 15.

The entire search engine, including our template library and search engine components, consisted of
26,887 lines of code developed over 4 months. The template library was vital to the success of our search
engine, the most notable module being our hashmap, which had 3x the speed and ⅓ the memory overhead
of the STL equivalent.

Despite some known bugs, documented in ​Section 16​, and an extensive analysis in ​Section 17​ of
potential future tasks, we believe the search engine is a minimum viable product in its current state. If it is
running on enough distributed machines and has a relatively small pool of users, it is able to efficiently
serve results. The code base is stable and rarely (if ever) crashes, providing the robustness necessary to
serve the engine to end users.

To our instructors: Nicole Hamilton, Carolyn Busch, and Kevin Li, we understand this report is extremely
long. ​Sections 2-7​ and ​16-20​ summarize the team dynamics, core results, and reflections on the project
and the course as a whole. We recommend you certainly read those. ​Sections 8-15​ exist to do justice to
the development process and features of each module including the challenges encountered during the
process. Please read or skim those time permitting and at your own leisure (or just look at the figures).

Final Report Page 6

Section 2 - Team Organization, Functionality, and Procedures

Our team consists entirely of members who knew each other prior to the class. Daniel, Brandon, and
Austin attended high school together, while Alex and Adolfo met them through classes at the University.
Alex met Ryan while working in the Michigan Autonomous Aerial Vehicle Vehicles - Guidance and
Navigation team, and he was added to the group on the first day of class.

We chose to use an AGILE development process for this team project. The codebase was maintained on
GitHub, and we used biweekly sprints to track progress. To ensure high code quality of our final
codebase, all code required at least two peer reviews before being merged into the master branch.
Additionally, we used Slack for all team communication and had bi-weekly team meetings regularly
attended by all members.

Since we are all friends with relatively similar schedules, we largely coded as a group; this was
particularly helpful when people found bugs or ran into roadblocks. Most modules were developed in
teams of at least two to promote an environment where members could resolve blocking issues together.

In all, we managed to maintain a fairly even work load. Adolfo developed the HTML parser and stemmer
modules. Brandon, Daniel, and Ryan were the principal crawler developers. Adolfo, Austin, and Ryan
developed the index. Adolfo, Brandon, and Ryan developed the constraint solver and query serve
architecture. Daniel developed the query parser. Alex wrote the Ranker. Brandon and Austin developed
the initial Server. Adolfo and Alex extended the server to the Multi-server distributed architecture.

Section 3 - Code Contributions

This section summarized the total lines of code (LOC) written on this project as well as lines of code per
team member by submodule. This is detailed in ​Table 1 ​below.

Table 1: Lines of code summary table for the Maximal Munch search engine

Module Submodule
Total
LOC

Adolfo
Apolloni
LOC

Daniel
Hoekwater
LOC

Brandon
Kayes
LOC

Austin
Kiekintveld
LOC

Alex
Raistrick
LOC

Ryan
Wunderly
LOC

HTML Parser 880 880

Crawler Crawler
Minion

1712
100

756 656 100 100

Crawler
Master

1710
1240

470

Crawler 254 254

Final Report Page 7

1 The library was built before Ryan Wunderly joined the team thus he did not have the opportunity to work on it and
would not be expected to have code contributions in this section.

Aggregator

Indexer Stemming 670 670

Index
Serialization

954
954

Index Build 784 666 118

ISRs 1027 243 784

Constraint Solver 350 175 175

Query Compiler 522 522

Ranker Static 208 208

Url 206 206

Crawl 119 119

Dynamic 352 352

Utilities 390 390

Server

Query Serve 348 174 174

Single Server 774 232 542

Distributed
Serve System

611 183
214

214

Frontend 695 109 586

Utilities Chunk
Checker

369
369

Batch
Rankers

331

331

Command
Line Engine

102
51 51

Team
Library 1

Hash
Map/Set

1346
1346

Vector 505 505

Deque 725 725

Heaps 482 482

Math 907 907

Final Report Page 8

Section 4 - Search Engine Functionality Checklist

Below is a summary table of our search engine’s supported functionality. This outlines all features
supported and not supported by our engine

Table 2: A summary of all features supported by our search engine

2 These include string functions, conversion functions, sorting functions, etc.
3 This includes bloom filter, trie, our own unique pointer, etc.
4 We initially had issues with accidental Distributed Denial of Service attacks. These have been resolved. We
apologize for any complaints filed by other institutions early on.

Libraries

Functions 2 1588 357 450 144 250 387

Other Data
Structures 3

1287
459

200 228 400

Other 141 141

Test Cases 5888 800 925 925 875 1514 849

Makefiles 407 70 207 100 30

Experiments 243 24 75 144

Total 26887 4515 3252 4411 6150 6356 2203

Module Feature Supported

HTML Parser Fully parses HTML pages in a robust manner Yes

Crawler Hash Map & Hashing Function Chosen Yes

Manages a frontier of URLs and prioritizes them Yes

Is polite (robots.txt, does not DDoS anyone, etc.) 4 Yes

Automatic Recrawl No

Crawler is crash resistant, automatically restarts, and does not
lose data on crashes

Yes

Retrieves documents over both HTTP and HTTPS and also
handles redirects

Yes

Parallelized by Multi-threading Yes

Final Report Page 9

Identifies and suppresses loops, spam, etc. Yes

Is distributed across a network of machines Yes

Indexer Determined index file, format, numbering, what attributes were
captured, and how to gather useful statistics

Yes

Demonstrate that you can build a reverse word index as a file
with a dictionary and a posting list for each token.

Yes

Create an index stream reader class that can seek. Derive word
and document ISRs.

Yes

Constraint Solver Create a derived and working AND, OR, Phrase ISR and support
parenthesis

Yes

Demonstrate working TDRD parsing and compile a query into a
structure of ISRs

Yes

Support Stemming & stop word elimination Yes

Demonstrate compiling and running a query producing unranked
results.

Yes

Derive and demonstrate container ISRs No

Ranker Rank using a bag-of-words technique. Yes

Rank using static page attributes. Yes

Rank using heuristics or other method considering proximity or
ordering.

Yes

Demonstrate ability to produce a useful 10 best search results. Yes

Create and use a training set. Yes

Rank using a neural net or other ML technique. (In the static
ranker)

Yes

Support PageRank or similar. (A ​custom ML trained static ranker
considers neighboring static / url ranks)

Yes

Server & Frontend Create a simple command line interface. Yes

Create a simple HTTP server as a wrapper UI. Yes

Report title, clickable URL. Yes

Serve results from a distributed system consisting of a network of Yes

Final Report Page 10

Section 5 - File System Footprint and Index Statistics

Below, ​Figure 1, ​ explains the layout of our filesystem. Our file system has three primary components.
First, Google Drive for aggregation and and long term storage. Second, Alex’s desktop which contains
locally files for testing and an 8 TB drive with a full copy of our index. Third, our digital ocean cloud
platform which has the entire 2.2 TB index distributed across 13 minion machines. Together this is our
total file system footprint. Note that each index directory contains a collection of .index file which follow
the index format in ​Section 10. ​All crawl files contains aggregated pages stored in .agg files.

Figure 1 - Filesystem Footprint Diagram

Section 6 - Query Serve Performance Statistics Summary

When serving queries on a single host (a Dell XPS laptop running 32 GB of RAM and an 8th generation
Intel i7 processor) with 11 million pages, we found relatively performant results. The median query time
was 360 milliseconds across 16 test queries that returned an average of 2713 ranked results. We expect
this benchmark to be representative of a fully distributed system, which would consist of 10 million pages
per machine. This provides a performance benchmark for each minion machine on modern controlled
hardware.

machines each with a subset of the index

Additional Features Index off of a distributed system using several machines Yes

Associate anchor text with the document it describes in the index Yes

 Create a snippet to go with reported hit No

Final Report Page 11

When serving the whole index (116 million documents) on a distributed system of 13 machines we found
the search engine had a median query time of 5 seconds. This performance drop off was in part due to the
older and less capable hardware running on the machines and in part due to imperfect load balancing
across the cluster. Despite this fact, these numbers are promising considering the size of the corpus, and
we would expect improved performance with a larger cluster of machines with more computing power.

For further analysis of query performance, see ​Section 16​.

Section 7 - Search Engine Architecture

Our search engine consists of 5 overarching modules: the parser, the crawler, the indexer, the query
engine, and the frontend.

The parser is the first major module. It accepts raw HTML as input and produces a compact digest form
suitable for crawl storage and a more processed form for indexing.

The crawler module is composed of a master and a pool of minions. Master is a process which maintains
a frontier as a priority queue of URLs to crawl and is also responsible for removing duplicates,
performing URL filtering, and ensuring request politeness. Minions send requests for work to master, and
receive a set of URLs from the frontier. Each minion maintains a thread pool of workers, which crawl
each page and save the digested HTML to Google Drive for storage. Once a chunk is processed, the
minion sends back to master any links found on the pages, along with a request for more work.

The index is the heart of the engine. On the build side, it consumes crawl record files, parses them, and
compiles the inverted index and document information necessary for queries. This data is serialized to
disk and deserialized on query side, providing a barebones interface for the query engine.

The query engine, composed of the query compiler, constraint solver, and ranker, attempts to distill the
essence of what a user is looking for out of a text query, perform a mechanical search process over index
chunks, and sort results to find the most relevant to the user’s query constraints.

The frontend accepts queries as input, forwards them through the distributed server, and receives a set of
results, which are displayed for user interaction.

Tying this all together is our library, known as Square One. It includes templates for any relevant data
structures and algorithms used in the other modules of the engine.

Section 7.1 - Architecture Diagram

This section provides an architecture diagram for both index build and query serve.

Final Report Page 12

Figure 2: Architecture diagram of the crawler and index build submodules. Note the distributed
nature of both the crawler and the index build system.

Figure 3: Architecture diagram of the query engine displaying submodules, data storage units, and

data pathways.

In addition to the pipeline shown above, it is worth noting that the entire system is distributed across
multiple machines each with a subset of the overall index. See ​Figure 1 ​for a more detailed diagram of
the filesystem.

Section 8 - HTML Parser

The HTML Parser supports two distinct modes of functionality: initial parsing for the crawl record and
final parsing for the indexer. The initial parsing for the crawl record is critical as it allow us to efficiently

Final Report Page 13

store a record of all pages crawled without recording needless information such as scripts, style
comments, and images. It also extracts urls and anchor text from the page, which are sent back to the
crawler. The complete parsing mode strips all HTML, leaving only plain text for the indexer.
Additionally, it extracts key features that are used by the ranker: anchor text, title, URL, headings, and
emphasized words.

The HTML parser uses recursive descent parsing and processes HTML in a single pass without any
copying. The parser is designed to safely error on invalid pages (including deeply recursive tag structures)
which avoids crashes during the parsing process, allowing the crawler to throw out invalid pages.
Supporting two modes of operation allows us to perform two independent tasks without adding much
code complexity, since functions such as tag extraction, tag comparison, and data extraction are shared
between the modes.

Section 8.1 HTML Parser Performance

The parser itself was robust enough to successfully parse ~90% of pages we crawled. Considering the
degree of “tag soup” and invalid page formation in our crawl space, we found this impressive. 5

By using a preliminary parser to strip useless content out of pages before storing the crawl archive, we
were able to reduce page size by 50% before storage. This reduction was crucial in order to eliminate
wasted storage and disk/network I/O.

Section 9 - Crawler

True to its name, the crawler is responsible for crawling the internet and processing web pages, which are
later used in the index of our search engine. The crawler itself is a distributed system that will be covered
in detail in the sections below.

Section 9.1 Crawler Architecture

We designed a multiprocess, distributed crawler consisting of a master process and a pool of minion
processes. Master’s role is to maintain a frontier of pages to crawl, ensure we do not crawl pages that have
been crawled before, and ensure politeness across the domains that we are crawling. Each minion receives
URLs, downloads and processes the content, stores the digest to Google Drive, and gives master any links
found on the page with blacklisted links removed.

The multiprocess design allows us to distribute a fleet of minions across independent machines, including
cloud servers. Master and minion communicate over TCP sockets to achieve low latency communication
between processes. The message protocol is defined in ​Appendix C​.

5 ​https://en.wikipedia.org/wiki/Tag_soup

https://en.wikipedia.org/wiki/Tag_soup

Final Report Page 14

Section 9.2 - Crawler Master
Master is responsible for labor management and distribution. To coordinate this, Master maintains a
priority-queue frontier of URLs, a set of crawled URLs, and a pool of Minion connections.

Master was designed to be as efficient as possible to enable support of a large number of minion
connections, which means that master interacts with URLs in a very minimal way. Thus time intensive
processing that needs to occur for a given URL, such as robots.txt and blacklisting, is done by the
minions. This enables us to better utilize the CPU resources available in our system.

The frontier is a max binary heap ordered by Crawl Rank (see ​Section 13.3​). To minimize memory
overhead, we cap the frontier size at 3 million links, archiving low quality links to disk. This reduces
memory overhead and ensures the frontier and hashset are able to fit in RAM.

To keep track of crawled pages, master maintains a hashset of every link ever discovered by a minion. At
the end of our crawl, this hashset contained 1 billion distinct entries. We developed new strategies during
our crawl to reduce hashset memory usage; instead of storing url strings, we generated a 64-bit hash of
each url and stored that hash as an identifier. This reduced our hashset memory by a factor of 10 to a total
of 8.6 GB at the end of the crawl.

On startup, master creates a socket on a given port number. Minions make a connection to the port for
each batch of urls they would like to receive. Master assigns a thread to each connection.

Master detects minion crashes by looking for closed connections. In the event of a crash, master
re-assigns the batch to a new minion. Master is made crash tolerant by backing up its frontier and seen set
every 30 minutes. The backup operation is atomic, eliminating worst-case risk of losing all state. The
entire system makes the crawler crash tolerant, preventing loss of pages and ensuring we can seamlessly
resume crawling in the event of any crashes.

Section 9.3 - Crawler Minion
Minion is a multithreaded worker process which performs tasks assigned by master. It processes each
batch by following a producer-consumer relationship. To do so, it maintains its own queue of work and a
collection of URLs it has gathered from pages. These resources are shared among several threads: a
gatherer thread, a writer thread, and a pool of processor threads, known as “munchers”.

The gatherer thread is responsible for refilling the frontier when it is empty; when it does so, it pulls a
new batch from master and places this batch on the local frontier for processing.

Each batch is sequentially processed by a muncher thread. For each link, the muncher connects to the
website, checks the domain’s robots.txt, and follows any redirects to land at the final page. It then parses
the webpage and stores the digested HTML. When the batch is complete, the writer thread serializes the
digested pages to disk then requests a new batch from master.

Final Report Page 15

To minimize network overhead, a minion only writes results back to disk and to master after completing
an entire batch of work; this process is coordinated by the writer thread.

Through these behaviors, the master and minions actively discover and process pages. Because of the
number of processed web pages, it is imperative to be intentional about the information that is stored.

Section 9.4 Aggregator

When storing a large number of downloaded web pages on one machine, it is crucial to devise a file
storage strategy that is easily human-readable and does not bog down the file system. Our system stores
each page as readable text concatenated in a file. This allows us to store data from an arbitrary number of
scraped pages in one file by simply concatenating the page files together. To manage this, we wrote an
aggregator program, which combines the page data from a fixed number of files into one aggregate file. In
this manner, we can store all the relevant information for thousands of web pages with the system
management overhead of a single file.

Section 9.5 - Storage Strategy
In order to coordinate a distributed web crawler, it is necessary to manage storage across machines. Our
method of choice for handling this concern was with Google Drive, which offers virtually limitless
storage space and access to data across platforms. All machines running minion processes mounted
Google Drive as a directory, and automatically uploaded their aggregated pages to be further processed.

Section 9.6 - Rate Limiting, Diversity, & Denial of Service Challenges

We initially believed that, with a sufficiently large URL frontier, crawling would naturally diversify. This
proved to be incorrect when we crashed the servers hosting the website ​soup.io.

We attempted to prevent future incidents like this by penalizing repeat domain occurrences within each
batch sent to a minion on a per-batch basis. Unfortunately, this proved ineffective in preventing high rates
of traffic against a single site. While no site ever again received the volume of traffic directed at soup.io,
the improved system still directed suspiciously high levels of traffic to University of California -
Merced’s login pages. This problem was reported to us by ITS (we had executed 300,000 queries over the
course of 20 hours). We mitigated this by developing a global tracking system for the number of times we
visited each domain name. This global tracking system would begin penalizing pages when they hit 0.1%
of the last million pages crawled along a custom score which reduced the page’s rank to 0 by the time it
hit 5% of the last million pages crawled. This upgraded system reduced the peak hit rate (generally on
domains with extremely high url ranks) by more than 10x.

These changes, however, did not solve all denial of service issues. We were reported one more time to
ITS: this time for crashing the Duke Law School course login and registration databases. In this case, we
executed an average of one query every 2 seconds against Duke’s databases for 5 hours. Because these
were database queries with high amplification factors (large return for a single query), this brought their
servers down entirely.

Final Report Page 16

To prevent any further complaints, we added a randomization factor of ± 20% to our frontier ordering to
prevent any domain-based URL clumping. This randomized high-ranking links in a virtually identical
manner to random sampling, preventing clumping and thus any further denial of service complaints.

Section 9.7 - Multi-Threading & LibreSSl Challenges

During our crawl campaign, we noticed that LibreSSL’s libtls appeared to cause a double-free on an
internal object when many threads were running at once. Austin filed an issue on the LibreSSL GitHub
repository. A few days later, the developers responded that the context structure contains a
reference-counted default config object shared across all instances. Multiple threads were having a data
race on the reference count, resulting in multiple frees of the object. The developers recommended
locking around the initialization and freeing of the objects. Following this change, we saw a steep drop in
crawl performance due to contention. After reading through LibreSSL source code, we discovered it is
safe to have a single context object per thread each with their own thread-local config. As a result, we
only needed a single lock around the thread local initializations that occur once on program launch, and
the rest could then be lock-free. As a result, we eliminated the data race and significantly increased crawl
performance due to increased stability and zero contention around TLS downloading.

Section 9.8 - Crawl Results

Over the course of our crawl, we downloaded and stored 150 million pages. This included crawling 8.4
million unique domains. After parsing out all unnecessary information from the page (scripts, style
comments, etc), this lead to a total crawl archive of 7.4 TB of data. During our crawl, we discovered a
total of 1 billion unique URLs. Our peak crawl rate was 25 million pages per day, and the crawl ran for a
total of 23 days. This can be seen in ​Figure 4​ below.

Final Report Page 17

Figure 4: Our distributed crawl by user’s unique name. Note that in many cases one username

represents multiple machines.

This figure summarizes total pages crawled over time by host username. It shows both our crawl rate and
distribution across various machines. The following pie chart in ​Figure 5​ below breaks down crawling by
host machine.

Final Report Page 18

Figure 5: Pages crawled as a percentage by host machine. This shows how many different machines

we used in our distributed crawl and the importance of a distributed system in achieving our
document corpus.

From this chart we can see the impact of a distributed crawl; no machine contributed more than 20% of
our total 150 million crawled pages. We would not have reached these numbers without our peak
operation of 8 separate minion machines crawling in parallel.

Section 9.9 - Crawling from the Cloud

Another advantage of distributing our crawler was that we were able to put our crawler on the cloud.
Through Digital Ocean’s cloud platform, we set up five virtual machines (or “droplets”), which crawled
with a total of 1000 minion threads. These droplets crawled 60 million pages and achieved a peak crawl
rate of 25 million pages a day. The total cost of the cloud resources used for the crawl was $15.00 (or ~25

Final Report Page 19

cents per million pages). This was enormously successful and demonstrated the feasibility in scaling
crawling indefinitely with cloud machines.

Section 10 - Indexer

The following sections detail the indexer module. We cover the index format, how we serialize and
deserialize the index, the index build system, and the overall index build performance.

Section 10.1 - Index Format
The index format was designed to be trivially parallelizable, both on the build and serve side, by
separating it out into a series of “chunk” files. Each chunk is fully capable of serving queries for the
documents it contains and was built independently of all other chunks.

The file format begins with a prefix, including version number, to verify compatibility. The prefix
contains all length fields necessary to locate other sections of the file.

Next are the reverse-index and the term storage segments. The reverse index segment is a series of
fixed-size key-value pairs, and we store all terms concatenated together with no delimiters. The key is an
offset into term storage, and the value is of an offset intoto a seek table. Given more time, we would
modify this format to serialize the hashmap directly into the file for memory efficiency on the serve side.

The seek tables are an intermediate step between the reverse-index and the posting lists. Each seek table
contains a count of posting list entries and a constant size table from absolute location to byte offset into
the posting list, and each seek table is stored sorted by absolute location. Our largest posting lists rarely
exceed the 32 memory pages required to make larger table sizes worth the space overhead to reduce
paging. This size incurs an overhead of 512 bytes per posting list in each chunk however, and it makes up
a significant portion of our index size overall (~62% - see ​Figure 6)​. To reduce waste, we distribute the
seek entries evenly across the posting list while serializing. Given more time, we would move to a
dynamically sized table to reduce paging further. ​Figure 6​ shows the distribution of memory used by each
portion of the index.

Final Report Page 20

Figure 6: Memory utilization (as a percentage) by entry type in our index

Clearly seek tables have by far the most memory allocation and require the most work in terms of further
optimizations. The posting lists themselves are stored extremely efficiently. Each post location is
serialized as a delta from the previous post location, which is encoded using Variable Length Quantity,
commonly used in the MIDI file format. VLQ encodes integer byte sequences in base-128, leaving off
leading zero bits and using the high bit of each byte to denote the end of an integer. This results in our
posting lists being a small portion of our chunk size (~31%), and helps to reduce paging.

The remaining two segments of the chunk are the document index and storage. These segments are what
allow us to look up a document for a given location/post, and retrieve information about a document.
Document storage stores variable length fields, while the document index stores the fixed field
information. Storing the document index sorted by start location lets us binary search for lookup.

Section 10.2 - Index Serialization/Deserialization
The serialization step takes in a mapping from term (string) to posting list (sequence of absolute locations
in the index), and a list of documents from the build system. It then translates the data into the previously
mentioned file format. This is done by iteratively building up a representation in memory using
dynamically allocated containers, truncating a file large enough to store the full size, and directly writing
the bytes through a memory mapping. This process could potentially be made more efficient by writing to
multiple growing segment files, and then merging these into a full chunk rather than building a copy of
the whole file in memory.

On the deserialization side, the prefix segment allows us to create a lightweight representation of an index
chunk that only stores pointers into the different segments on disk. The shared data types between

Final Report Page 21

serialization and deserialization ensure that the data is interpreted exactly as it was written, and the
version number and prefix fields sanity checks the shared interpretation. Deserialization does not perform
the expensive step of re-building our reverse index hashmap in memory, it only provides access to the
key-value array. A higher-level chunk abstraction exists which is able to perform this conversion at
construction, and still avoids bringing the term storage from the file into memory. This keeps the cost of
reading a chunk as low as possible. All other information is stored directly in the file, and does not require
copies or writes while reading the index chunk.

Section 10.3 - Index Build System

The index build system itself is a producer-consumer system. It takes in the aggregate (.agg) files from
disk and parses them into a document structure with key information stored in fields. These structures are
produced by a thread pool while the vector of generated documents is not full. Meanwhile, a separate
thread consumes these documents and writes them into our three index chunks: the good chunk, the bad
chunk, and the anchor digests chunk. Our index is partitioned to improve query serve by separating
documents by static rank into a good index and bad index. When a given chunk reaches a predefined max
capacity, it is serialized to disk. This entire process is summarized in the ​Figure 7​ below.

Figure 7: The index build process. This figure summarizes the process for computer aggregated

crawled documents files to index chunks.

Final Report Page 22

Section 10.4 - Index Build Distribution

Because index chunks can be built entirely in parallel from separate .agg files of crawled pages, we could
trivially distribute index build. Our index build was distributed across three separate machines,
substantially increasing the index build rate; in a production search engine, this could be extended even
further. Moreover, because all files were available on Google Drive, physical data transfer on disk was
unnecessary. Instead, each index build machine could pull the necessary files to index directly from
Google Drive.

Section 10.5 - Index Performance

Our multithreaded index build supported a build rate of 15 million documents a day per machine. We
completed index build on a network of 3 machines over the course of 5 days. Additionally, our index
serialization yielded high compression rates for our index; our crawl archive was compressed by a factor
of 3x when building our index. This is shown in ​Figure 8 ​below.

Figure 8: Total size of crawled data compared against archived page size and index size

Here we see the high level of compression from raw HTML to the index itself. The HTML parser
removed ~ ½ the content before archiving the page. The index then further compressed this data by factor
of 3. This allowed us to convert an approximately 14 TB of raw crawled pages into a 2.2 TB index. This
was critical to search engine performance as there was substantially less data on disk to traverse during
query serve.

Final Report Page 23

Section 11- Query Parser
The query parser translates a search into tokens bound by a relationship given by a specific grammar
parse tree. It is implemented as a top-down recursive descent parser, a style of parser known for its
modularity and elegant simplicity. The query parser that we implemented in our project is a combination
of Google query language and the language specified by Nicole Hamilton. It supports all recommended
language features as well as numeric ranges (denoted by ##..##), stop word elimination, stemming, string
cleaning, and intersection (ANDing) of adjacent words.

Section 12 - Constraint Solver
The constraint solver takes the results from the query parser and uses logical stream readers to return
pages from the index that contain the keywords. An example would be the search ​the University of
Michigan​. The Query Parser would return the ISR parse tree [(univers OR univers*) AND (michig OR
michig*)] (note stemming, casing, stopword elimination, and decoration to search for anchor text), and
the constraint solver would traverse the index with this ISR tree finding all matches.

Section 12.1 - Constraint Solver Design

The constraint solver is implemented as a multithreaded process, which handles several chunks in
parallel. It clones the ISR tree from the parser into an arbitrary number of copies, runs each across a
subset of index chunks, and combines the results. Since our index is partitioned, we initially only solve
over the “good index”. If we do not generate at least 1000 matches on the good index (on each distributed
machine), we then go to the index of remaining pages to generate additional matches. Since the “good
index” only consists of 20% of total pages this allowed us to increase performance by 5x on many
common queries.

The constraint solver takes an index (a vector of memory mapped chunks) by reference from the high
level query serve process. Then, in separate threads, it scans the ISR trees over the chunks in the index
and merges the results from each thread together into a final set of matches. The constraint solver takes
care to consolidate anchor text matches for a single URL into a single object used by the ranker. These
matches are then returned to the query serve engine, which passes them to the ranker.

Section 12.1.1 Thread Pool Design

For the constraint solver, we experimented with thread pools of varying size, ranging from two threads
total to one thread per index chunk. We saw no improvement by using one thread per index chunk, largely
because disk I/O was the limiting factor. In the end, we settled on a thread pool of ten threads total, which
maximized performance in testing.

Section 12.2 - ISR System Design

Index Stream Readers (ISRs) are the core of the constraint solver because they find the desired tokens or a
combination of child ISR matches in the index. Our system uses Word, Intersection (AND), Union (OR),
Not, and Phrase ISRs. These ISRs are derived from a base ISR class; this fact allowed for the

Final Report Page 24

parser-generated ISR tree to take advantage of a polymorphic interface of token retrieval. ISRs interfaced
with the index to access posting lists and document metadata. The interface, ​index-serve​, defined iterators
to move around that index so that ISRs were not dependent on index implementation. This design
decision made ISRs robust to changes in index content and also allowed for parallel development.

Section 12.3 - Constraint Solver Performance

Initially, page table lookups in the operating system were the bottleneck for the entire query serve engine.
Because our loaded index was a 2.2 TB memory mapped file, the entire index was never paged into
physical memory; not even the index hashmaps could fit entirely in memory. This lead to continuous
thrashing and horrible performance. The operating system would thus have to go to disk, locate the
appropriate pages that matched virtual memory and load all the necessary 4K pages into RAM. This load
process took over 99% of total constraint solver time. We observed this behavior by the fact that repeated
queries (even those that occurred several hundred queries and over an hour later) were served in 1/100th
of the time. We resolved this issue by distributing query serve across several machines (documented in
Section 14.1​), each hosting a ~170 GB index with ~10 million pages. Page faults were no longer the
constraining factor, and constraint solver performance was improved by a factor of 100. The constraint
solver on average takes ~1000 ms to generate all matches for a given query on the entire 116 million
document index.

Section 13 - Ranker

The overall purpose of the ranker is to prioritize the ordering of results shown to the user. In effect, it
takes all matches from the constraint solver and develops an ordering over them specified by the query. In
designing the rest of our search engine, we noted that elements of the ranker could also be quite useful for
the task of prioritizing crawl order. We decided to divide the ranker into 4 components: the URL,
Crawler, Static, and Dynamic Rankers, which will be explained in the coming sections. Division into
modules enables reuse between webpage ranking and crawling, promotes good encapsulation, and makes
tuning of individual ranker performance substantially simpler.

Each ranker has a function to extract features from an input then a function to produce a rank from these
features. By convention, ranker features are all non-negative. Negative values are used to indicate that the
ranker input was invalid and should not be considered. The separation of feature extraction is vital in
situations such as index build where we wish to only store the dense feature.

Section 13.1 - Url Ranker

The URL Ranker gives the quality of a url. It is used as a submodule of the Static and Crawl rankers.

First, we implemented the obvious features of protocol and extension ranks by hand, designing values as
shown in ​Appendix A. ​To scientifically determine what features might be useful, we scraped urls from
Reddit and extracted an excessive number of features from them, detailed in ​Appendix B. ​Relative

Final Report Page 25

importances of these features was determined using an Extra Trees Regressor (ETR) and can be seen in
the chart below.

Figure 9: Extra-Trees Importance of Experimental URL Ranker Features

Clearly, the ETR determined that many features other than the leftmost “obvious” features are important.
We further refined these features over the course of ranker development, eventually deciding on a final
feature set that can be seen in ​Figure 10​:

Figure 10 - Final URL Ranker Features and Weights

Final Report Page 26

Initial versions of the url ranker used a direct linear combination of these features, but we eventually
created hand-designed piecewise nonlinear functions, which we apply to the features before weighting. In
Python, we experimented with deep learning systems to automatically and empirically learn these
nonlinearities, but we were unable to deploy these models due to the time investment that would have
been required to implement the necessary matrix math.

Section 13.2 - Static Ranker

The Static Ranker returns the quality of a given HTML page without respect to any query. The Static
Ranker uses the URL Ranker as a submodule. Our Static Ranker makes the additional assumption that
only English pages should score highly.

Most static ranker features are ratios of the lengths of certain portions of the HTML digest. These are
covered in detail in ​Appendix D​. We also implemented some novel features to achieve our goal of
detecting non-English or spam websites.

Stopwords are not stripped from HTML digests until the index build phase, so we count their number in
the Static Ranker. We use a nonlinear function of this count to detect spam pages, as pages with too few
stopwords are clearly keyword spamming. Our exact list of stopwords can be found in ​Appendix A​.

To improve crawl performance, we implemented Englishness detection in the Static Ranker. To do this,
we count the frequency of each A-Z character and compute its difference from a pre-determined
distribution using Jensen-Shannon Divergence. This allows us to detect any pages which do not use
characters with approximately the correct frequency, which helps to filter out any script pages,
stylesheets, or foreign language pages which make it through our other methods of filtering​ ​A graph
showing effective splitting of English and non-English pages can be found below in ​Figure 11​:

Final Report Page 27

Figure 11 - Distribution of English and chinese pages

From the figure above, we see distinct curves for English and Chinese pages with little overlap, allowing
effective detection and elimination of foreign pages (particularly Chinese). We also developed our static
ranker weight and features which are shown in the plot below:

Figure 12 - Final Static Ranker Weights

Final Report Page 28

In a larger system, we think the Static Ranker could be improved dramatically. All the features we have
extracted are attempts to infer the quality of a page, however in a system with actual users we would be
able to directly measure this by seeing what domains are most commonly clicked on the frontend. Other
teams used Alexa domain rankings to emulate this, however we initially avoided this. It was eventually
implemented as a Dynamic Ranker feature for reasons which will be discussed in ​Section 13.4​.

Section 13.3 - Crawl Ranker

The Crawl Ranker prioritizes the order in which links are crawled by scoring them before insertion into
master’s frontier. Since master also periodically prunes its priority queue, the scores given by the Crawl
Ranker indirectly determine which links are crawled and which are not.

We designed our Crawl Ranker to minimize the overhead of content sent over IPC. It accepts the URL as
input as it is very rich in features and introduces no overhead since it is required by other parts of Master.
We decided to add one additional feature to be sent over IPC - the static rank of the source page a link
was found on. This feature is very dense since it encodes all the Static Rank features discussed above. We
make the “PageRank assumption” that URLs found on high static rank pages will generally be higher
quality than those found on low rank pages. Computing these Static Ranks on Minion means we save the
cost of sending the full HTML page to master. It also naturally distributes the CPU load of computing the
Static Ranks across our thousands of minion threads.

Towards the end of our project, the Crawl Ranker also took on some responsibility for politeness. We
added a random noise feature with an approximately 20% weighting which served to break up clusters of
URLs from the same site to prevent over crawling of any particular domains and accidentally Distributed
Denial of Service attacks (DDos).

Section 13.4 - Dynamic Ranker

We decided that our dynamic ranker would operate on four decorated streams of information from the
index - URL, Title, Headings and Body text. It breaks down any query into a list of stemmed tokens, then
extracts the number of matches for these streams. For each stream it computes the number of OR, Phrase
and Rarest Word Intersection matches. We augment these index based features with the Static Rank. This
results in 12 analyzed features.

The features extracted by the Static Ranker are stored in the index as a dense vector so that we can
include Static Rank at this step without access to the raw HTML.

We also include a score for the domain extracted from Alexa Top Pages. As mentioned in ​Section 13.2
we initially avoided directly taking another company’s website ranking, instead opting for a purely ML
static ranker. At the point we added it it was too late to add it to the static ranker since its features were
already baked into the built index. Thus it was added to dynamic ranking, which also has access to page
urls.

Final Report Page 29

Below are the weights used in the linear combination of these features.

Figure 13 - Dynamic Ranker Weights

Note that body features appear very low weighted, however they often have significant contribution to
rank due to the high values of the features themselves.

Section 14 - Server

The server is the final C++ module of our search engine. It interfaces with the frontend to receive user
queries and then calls the query serve function itself to return ranked results back to the user. The server
receives the query as JSON from the frontend. It then parses this JSON to get a query from the user and a
particular page of results they want. It then calls the query serve function which returns a sorted vector
ranked results. The server can then run the safe for work filter (SFW) as needed to generate final results.
It generates the set of 10 results for the particular page requested, encodes it as JSON, and returns it to the
frontend for display.

Section 14.1 - Distributed Serve System

The above architecture lays out how a single server system would function however to increase query
serve performance we created a distributed server to work with a network of machines. Each minion
machine has an index of ~1/13th of the pages we have indexed and only by aggregating the results back
from all of the machines can the multi-server gain a complete set of results. We chose to implement the
distributed system at the server level with a multi-server and a minion server.

Final Report Page 30

Each minion machine operates a minion server. It is a simplified server that returns all results in JSON for
any query received. When the multi-server receives a query it then queries all minion servers over the
network with the query received. They return their vector of ranked results as JSON following the general
server process listed above. The master server then aggregates all of these results, it sorts the results and
then returns appropriate pages of results to the frontend.

The master server is a very lightweight process while the minion servers do all the work. The only
computation involved on the master server is caching recent query results and sorting the aggregated
vector of results from the minion server. By creating the distributed serve system we were able to reduce
average query time on the full index by a factor of ~200 by eliminating most thrashing.

Section 15 - Frontend

An initial frontend was developed using Bootstrap and Vue.js. The frontend used in our live demo
implemented with Webpack, Vue.js and Bulma. It features an “About Us” Page, Landing Page and
Results Page. It was developed using a global store model but did not use libraries such as Vuex to
manage this store. In ​Figure 14 ​below is an image of the Munch home page.

Figure 14: The Maximal Munch home page.

The results page contains a variety of features for customizing and displaying search results. It features
user friendly messages for cases where results returned no results. It has an interactive page selector for
querying additional results in increments of 10 per page. It has a google-inspired tagline at the top of each
set of search results which displays the number of results, time taken, and index size. It also has controls
for the Safe For Work (SFW) mode which screens for explicit content. The SFW mode also warns users
when > 20% of their results were filtered incase they would like to turn it off and see the full set of query
results. In ​Figure 15 ​below is an image of a sample query in the Maximal Munch Engine.

Final Report Page 31

Figure 15: The results page of the Maximal Munch engine. Note the page selector and “Safe for

Work” mode check box.

The frontend also validates queries to ensure they are nonempty, and prevents users from submitting new
queries until their previous one returns information. This was essential to supporting a semi stable live
class demo serving to multiple users as otherwise users inevitably DDoS our servers by repeatedly
querying without a delay.

All of the above listed features are supported by fields in the JSON response sent by the backend. The
frontend requests results from the backend by prepending its get request with a “search?” token then
appending parameters. For example “server.com/search?page=eecs+398&page=0&sfw=true” requests
results for “eecs 398” on page 0 with safe search enabled. Queries are “url encoded” to support this by a
javascript library, then are parsed on the backend side by splitting on & characters.

Final Report Page 32

Section 16 - Example Queries & Performance

While the query engine performance was summarized in in ​Section 6​,​ ​we will provide a more detailed
breakdown of performance here. Below is a table of sample queries run on a single machine
(representative of the performance of a target minion process). This machine served an index of 11
million documents which is approximately the target size for each machine in the distributed query serve
system.

Table 3: Summary of query result performance for a single machine serving 11 million pages.

Query # of Results Time (ms) Time per result (ms)

"detroit tigers" 1925 54 0.03

"Nicole Hamilton" 2 61 30.50

"spacex launch" 469 76 0.16

cppreference 127 104 0.82

"blueberry pie" AND
recipe 84 209 2.49

"ford pickup truck" 71 210 2.96

"alfa romeo" 4038 288 0.07

spacex 4003 331 0.08

spacex launch 2713 356 0.13

parker solar probe 284 750 2.64

"Cherry Pie" 677 900 1.33

"Michigan Football" 6583 1120 0.17

"vladimir putin" 8384 1126 0.13

"vladimir putin" AND
"donald trump" 3323 1732 0.52

"university of michigan" 20,256 2947 0.15

wikipedia 142,369 13558 0.10

wikipedia linux "operating
system" 2797 14,887 5.32

Average 11653 2277 2.80

Median 2713 356 0.17

1st Quartile 284 209 0.13

3rd Quartile 4038 1126 2.49

Final Report Page 33

From the table above we can see a couple of insights. In our distributed system, serving ~11 million pages
on each machine in the cluster seems reasonable as we have a median query time of 0.36 seconds. We can
also take note of a couple of outlier results. Particularly ​wikipedia linux "operating system" ​which had a
query time of ~15 seconds. This was due to the complexity of the query. The ranker currently takes
substantially longer to rank long and complex queries than simple ones. From the rightmost column you
can see the general trend that response time per result rises as number of searched words increases.
Additionally we can see the ranker also has performance which is linear with number of matches. The
wikipedia ​query exemplifies this performance as it took a very long time due to over 100,000 results
ranked.

The next table illustrates performance on our distributed system. This was a cluster of 13 machines each
running with 16 GB of RAM which served and index of 116 million documents.

Table 4: Summary of query result performance for a distributed cluster serving 116 million pages

Query # of Results Time (ms) Time per result (ms)

"detroit tigers" 21267 5302 0.25

"Nicole Hamilton" 76 568 7.47

"spacex launch" 9346 1733 0.19

cppreference 1797 970 0.54

"blueberry pie" AND
recipe 1048 2497 2.38

"ford pickup truck" 1099 3148 2.86

"alfa romeo" 53213 10019 0.19

spacex 41393 12069 0.29

spacex launch 34835 5481 0.16

parker solar probe 3625 4451 1.23

"Cherry Pie" 7320 3431 0.47

"Michigan Football" 11454 4332 0.38

"vladimir putin" 40497 9613 0.24

"vladimir putin" AND
"donald trump" 31604 5977 0.19

"university of michigan" 189,319 32804 0.17

wikipedia 295,821 23385 0.08

wikipedia linux "operating 29325 24,078 0.82

Final Report Page 34

Here we can see that, by distributing query serve, we maintained decent performance even as our index
size grew. The performance did drop by a factor of ~10. This is in part because the hardware on our
distributed cluster was worse both in terms of CPU and RAM. Additionally, performance dropped
because we didn’t perfectly load balance our index across the distributed machines. You are forced in the
distributed architecture to wait for the slowest machine to return results so this imperfect balancing
substantially hurt performance. There is certainly room for improvement on these performance numbers;
this can be done with a combination of code improvements and a larger cluster of distributed machines
but we have successfully demonstrated a system capable of delivering a minimum viable search engine
over a multi-terabyte corpus.

Section 17 - Known Bugs

Below is a list of known bugs in the search engine. These would all need to be resolved before it could be
turned into a product

1. In the last 4 days and 45 million documents of crawling, Master segfaulted once of unknown
origin.

2. Because the Ranker is linear in time-complexity with number of search results to rank. It
struggles on queries that return a large number of matches. This less of a bug and more of a
performance issue that should be resolved by speeding up the Ranker module.

3. The Not ISR is not fully implemented. It is in the codebase but has a known bug causing the
engine to sometimes return zero results. As a temporary solution we have disabled it in the query
language.

Section 18 - Future Work and Extensions

While we have demonstrated a fully functional search engine with a large index and efficient crawl
process, there is still room for improvement and extension. Particularly, there is a list of extensions that
we would need to make before delivering a production version of the Maximal Munch engine. This
section summarizes key extension areas including: automatic re-crawl, shingling, index sorting, early exit
and other performance enhancements such as sharding and cutting off slow machines during query serve.

system"

Average 45473 8815 1.05

Median 21267 5302 0.29

1st Quartile 3625 3148 0.19

3rd Quartile 40497 10019 0.82

Final Report Page 35

The crawler needs two key enhancements before delivering a close to production variant: automatic
re-crawl and shingling. The first is relatively easy: we just need to timestamp index chunks, then develop
a module to pull all of the pages out of them and have the crawler recrawl from that list of urls. Shingling
is more complex but necessary to provide relevant and unique search results. At the moment we
frequently crawl close to duplicate pages. For example, we have crawled the same pages from
Wikipedia’s mobile and desktop versions. This is redundant information (wasted crawl time) and also
leads to somewhat odd query results where we display both the mobile and the non-mobile variant.
Shingling should resolve this, increasing the diversity of both pages crawled and pages served.

The subsequent three improvements relate to performance of query serve. Creating a distributed system
has lead to a much faster query serve side; however, to support volume requests, we need to increase both
throughput and decrease response time. Index sorting and ranker early exit would decrease response time.
At the moment, we rank all pages found by the constraint solver. When a large number of results are
found, the ranker can take several seconds. By sorting the index by quality (static rank) we could ensure
that, in most cases, the first constraint solver matches would be the top ones. Then, we could implement a
ranker cutoff system where, if no top 10 or top 25 results were found in the next n pages analyzed, we cut
the ranker off. With a sorted index, this would significantly reduce response time without dramatically
reducing. We initially implemented this method on our search engine; however, the degrade in recall was
too high as our index was not well sorted. The final suggested improvement is sharding. Since we have a
distributed system we could serve off of several banks of machines (each bank containing a whole index).
Our master server could shard the results and send it to one of n banks of machines. This would
parallelize serve across multiple queries increasing throughput. By combining all 3 of the above
improvements, we believe with enough machines we could deliver an initial production search engine.

Section 19 - Reflection & What We Would Change

In retrospect, there is a clear difference in difficulty between working within your sandbox and working
with the outside world. Thus, the two modules that required the most work in terms of robustness and
debugging were the crawler and HTML parser because they had to interface with the rest of web
standards and rules that are rarely followed. They had to handle complications such as slow servers, bad
connections, malformed HTML, and early terminated connections. The query serve side was much easier
in this regard, as we had complete control over all interfaces and inputs. The query serve side was by no
means easy, but it was not plagued with months of unexpected bugs and crashes. Despite these
challenges, our search engine was quite successful and stable; however, it took substantially more
development time on the edge of our sandbox to complete than we anticipated.

However, if we rebuilt our search engine from scratch, we would make several design changes. Safe for
work mode would be stored as metadata in index build. We could analyze the entire text in this situation
without performance implications and, since this is static data, there is no need for it occur on the serve
side. Alexa ranking would be part of static rank; this would require an index rebuild, which is why it
didn’t occur. We would also constraint solve and rank at the same time to take advantage of memory
locality (a producer-consumer relationship). At the moment, the constraint solver runs sequentially after
the ranker. That is to say the constraint solver finds all matches before forwarding them to the ranker

Final Report Page 36

This is not cache-local and leads to an increased rate of page faults when compared to simultaneous
constraint solving and ranking. By changing this architecture, we would significantly increase
performance. Together, these modifications would provide substantial performance enhancements over
the current architecture.

Section 20 - Reflection on the Course

Overall, we found the course to be a superb exercise in designing a complex system from the ground up
and in developing a massively parallel and distributed system. Before the class, most of our team had
close to no experience writing multithreaded or multi-machine code. This course was an important
learning opportunity in that area. Additionally, we all improved in our ability to architect and write data
structures from scratch because we built our own template library. The course was incredibly enjoyable
and fulfilling because we were able to deliver a functional system at the end of it. It certainly met the
three goals of teaching us multithreaded and distributed systems, teaching us from-scratch architecture,
and allowing us to create a final product to talk about in interviews and on our resume.

We would suggest a couple of improvements for the course as a whole. First, we would recommend being
more upfront with which parts of the STL are allowed and which are not. In the end, we believe we
followed the instructor’s intentions, which were to require us to build important data structures from
scratch (hash map, heaps, sorts, etc.) while allowing us to use portions of the STL which were not part of
the core search engine code. Like std::cerr for error logging, and other very basic templates. However, we
think that this was not easy for every group to realize. We would also recommend getting groups started
on the engine earlier. Even with our team working hard from the start, there was still a massive time
crunch to deliver the final engine. Lastly, we suggest instructing everyone to randomize their crawl at the
very beginning so that teams do not receive complaints on politeness. We take full responsibility for the
complaints filed against us, but requiring all teams to randomize their crawl would likely reduce the odds
that future teams crawl too aggressively.

Final Report Page 37

Appendix A - Ranker Configuration Files

Stopwords​: the, be, to, of, and, in, that, have i, it, for not, on with, as, at, an, so

Words considered to be “useless” if found in anchor text​: here, link, this, click, go, follow, see, load,
email, article, page, download

Domain Extension Ranks:

Security Protocol Ranks:

Domain
Extension

Value

com 0.7

org 0.7

edu 0.85

gov 0.85

biz 0.3

io 0.8

net 0.5

default 0.35

Protocol Value

http 0

https 1

default -1

Final Report Page 38

Appendix B - Experimental URL Ranker Features
0. Bias feature - fixed to 1. Acts as an offset or intercept value.
1. Protocol rank - Determined from the config table in ​Appendix A
2. Domain name length
3. Domain extension rank - Determined from the config table in ​Appendix A
4. Length of total url
5. Englishness of url - logistic cross entropy of the character distribution of the url with a predetermined
english character distribution. Values indicate distance from english.
6. . count - number of ‘.’ characters in the input
7. . sum - sum of the lengths of the ‘.’ delimited sections of the url
8. . mean - mean of the lengths of the ‘.’ delimited sections of the url
9. . max - length of the longest ‘.’ delimited section of the url
10. . min - length of the shortest ‘.’ delimited section of the url
11. . range - (max - min) of the lengths of the ‘.’ delimited sections of the url
12. . var - variance of the lengths of the ‘.’ delimited sections of the url
13. - count - number of ‘-’ characters in the input
14. - sum - sum of the lengths of the ‘-’ delimited sections of the url
15. - mean - mean of the lengths of the ‘-’ delimited sections of the url
16. - max - length of the longest ‘-’ delimited section of the url
17. - min - length of the shortest ‘-’ delimited section of the url
18. - range - (max - min) of the lengths of the ‘-’ delimited sections of the url
19. - var - variance of the lengths of the ‘-’ delimited sections of the url
20. / count - number of ‘/’ characters in the input
21. / sum - sum of the lengths of the ‘/’ delimited sections of the url
22. / mean - mean of the lengths of the ‘/’ delimited sections of the url
23. / max - length of the longest ‘/’ delimited section of the url
24. / min - length of the shortest ‘/’ delimited section of the url
25. / range - (max - min) of the lengths of the ‘/’ delimited sections of the url
26. / var - variance of the lengths of the ‘/’ delimited sections of the url
27. _ count - number of ‘_’ characters in the input
28. _ sum - sum of the lengths of the ‘_’ delimited sections of the url
29. _ mean - mean of the lengths of the ‘_’ delimited sections of the url
30. _ max - length of the longest ‘_’ delimited section of the url
31. _ min - length of the shortest ‘_’ delimited section of the url
32. _ range - (max - min) of the lengths of the ‘_’ delimited sections of the url
33. _ var - variance of the lengths of the ‘_’ delimited sections of the url

Final Report Page 39

Appendix C - Master/Minion Message Protocol
Each message between master and minion (except for work_request) consists of a request header
followed by the message type. The header defines the necessary data to parse the message and is
standardized, while the message contains a variable sized list of urls. All messages are null terminated.
Minion first issues a work request to connect to master. Master sends a CRAWL_THIS message which
contains a batch of urls. For each page that is crawled minion sends a PAGE_URLS message so that
master can log the new urls that were found.

Request Header
WORK_REQUEST: WORK_REQUEST\0
CRAWL_THIS: CRAWL_THIS <NUM_URLS_IN_LIST>\0
PAGE_URLS: PAGE_URLS <SOURCE_PAGE> <PAGE_RANK> <NUM_URLS_IN_LIST>\0
Message Formats
CRAWL_THIS: <URL> <URL> … <URL>\0
PAGE_URLS: <URL> <URL> … <URL>\0

Appendix D - Static Ranker Features

1. Bias feature, pinned to 1
2. Body length
3. Body english divergence
4. Stopword density per body length
5. Title length
6. Title english divergency
7. Heading density
8. Length of <head> divided by body length

